Log in

The Effect of Hysteresis Loss on Magnetic Entropy Change in Highly Textured Mn-Ni–Sn Melt-Spun Ribbons

  • Letter
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Highly textured Heusler alloy Mn44.7Ni43.5Sn11.8 ribbons were prepared by melt spinning. The magnetocaloric properties were evaluated by the direction of the magnetic field along the ribbon surface and perpendicular (H and H, respectively) for the same sample with the field up to 10 and 15 kOe. While the maximum magnetic entropy changes only a little difference (5%), the hysteresis loss (HL) and net refrigerant capacity (RC) have been significantly affected by the crystallographic texture of the magnetic field of 10 kOe. The amount of the RC reduces about 10% (H) and 30% (H) due to the HL, respectively. The highly textured Mn-Ni–Sn melt-spun ribbons can be potentially applied in industrial magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pecharsky, V.K., Gschneidner, J.K.A.: Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78(23), 4494–4497 (1997)

    Article  ADS  Google Scholar 

  2. Terada, N., Mamiya, H.: High-efficiency magnetic refrigeration using holmium. Nat. Commun. 12(1), 1212 (2021)

    Article  ADS  Google Scholar 

  3. Silva, D.J., Ventura, J., Araújo, J.P.: Caloric devices: a review on numerical modeling and optimization strategies. Int. J. Energy Res. 45(13), 18498–18539 (2021)

    Article  Google Scholar 

  4. Law, J.Y., Franco, V., Moreno-Ramírez, L.M., Conde, A., Karpenkov, D.Y., Radulov, I., Skokov, K.P., Gutfleisch, O.: A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun. 9(1), 1–9 (2018)

    Article  Google Scholar 

  5. Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., Conde, A.: Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018)

    Article  Google Scholar 

  6. Dent, P.C.: Rare earth elements and permanent magnets. J. Appl. Phys. 111(7), 07A721 (2012)

    Article  Google Scholar 

  7. Hu, F.X., Shen, B.G., Sun, J.R., Cheng, Z.H., Rao, G.H., Zhang, X.X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe 11.4 Si 1.6. Appl. Phys. Lett. 78(23), 3675-3677 (2001)

  8. Tegus, O., Brück, E., Buschow, K.H.J., De Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415(6868), 150–152 (2002)

    Article  ADS  Google Scholar 

  9. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Manosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater 4(6), 450–454 (2005)

    Article  ADS  Google Scholar 

  10. Liu, S., Xuan, H., Cao, T., Wang, L., **e, Z., Liang, X., Li, H., Feng, L., Chen, F., Han, P.: Magnetocaloric and Elastocaloric Effects in All‐d‐Metal Ni37Co9Fe4Mn35Ti15 Magnetic Shape Memory Alloy. Physica. Status Solidi. (a) 216(23), 1900563 (2019)

  11. Shi, W., Chen, F., Liu, J., Xuan, H., Zhang, R., Zhang, Q., Zhang, M.: The effect of hydrostatic pressure on martensitic transition and magnetocaloric effect of Mn44. 7Ni43. 5Sn11. 8 ribbons. Solid. State Commun. 308, (2020)

  12. Kumar, R.: Magnetocaloric effect in cryocooler regenerator materials and its applications. Maters. Today: Proceed. 4(4 Part E), 5544–5551 (2017)

  13. Hernando, B., Sánchez Llamazares, J.L., Santos, J.D., Prida, V.M., Baldomir, D., Serantes, D.,Varga, R., González, J.: Magnetocaloric effect in melt spun Ni 50.3 Mn 35.5 Sn 14.4 ribbons. Appl. Phys. Lett. 92(13), 132507 (2088)

  14. Xuan, H.C., **e, K.X., Wang, D.H., Han, Z.D., Zhang, C.L., Gu, B.X., Du, Y. W.: Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni 44.1 Mn 44.2 Sn 11.7 ribbons. Appl. Phys. Lett. 92(24), 242506 (2008)

  15. Vishnoi, R., Kaur, D.: Exchange bias behaviour in magnetron sputtered Ni49.8Mn36.1Sn13.9 ferromagnetic shape memory alloy thin film. J. Alloys Compd. 509(6), 2833–2837 (2011)

  16. Raji, G.R., Uthaman, B., Thomas, S., Suresh, K.G., Raama Varma, M.: Magnetocaloric properties, exchange bias, and critical behavior of Ge substituted Ni50Mn36Sn14 Heusler alloys. J. Appl. Phys. 117(10), 103908 (2015)

  17. Kanomata, T., Umetsu, R.Y., Ohtsuki, K., Shoji, T., Endo, K., Fukushima, K., Nishihara, H., Ito, W., Adachi, Y., Miura, Y., Oikawa, K., Kainuma, R., Ziebeck, K.R.A.: Magnetic phase diagram of Ni2Mn1.44−xCuxSn0.56 shape memory alloys. J. Alloys Compd. 590, 221–226 (2014)

  18. Czaja, P., Maziarz, W., Przewoźnik, J., Żywczak, A., Ozga, P., Bramowicz, M., Kulesza, S., Dutkiewicz, J.: Surface topography, microstructure and magnetic domains in Al for Sn substituted metamagnetic Ni–Mn–Sn Heusler alloy ribbons. Intermetallics 55, 1–8 (2014)

    Article  Google Scholar 

  19. Hernando, B., Sánchez Llamazares, J.L., Prida, V.M., Baldomir, D., Serantes, D., Ilyn, M., González, J.: Magnetocaloric effect in preferentially textured Mn 50 Ni 40 In 10 melt spun ribbons. Appl. Phys. Lett. 94(22), 22502 (2009)

  20. Sahoo, R., Raj Kumar, D.M., Babu, D.A., Suresh, K.G., Raja, M.M.: In-plane and out of plane magnetic properties in Ni46Co4Mn38Sb12 ribbons. J. Appl. Phys. 113(17), 17A940 (2013)

  21. Biswas, A., Pathak, A.K., Zarkevich, N.A., Liu, X., Mudryk, Y., Balema, V., Johnson, D.D., Pecharsky, V.K.: Designed materials with the giant magnetocaloric effect near room temperature. Acta Mater. 180, 341–348 (2019)

    Article  ADS  Google Scholar 

  22. Zheng, P., Kucza, N.J., Wang, Z., Müllner, P., Dunand, D.C.: Effect of directional solidification on texture and magnetic-field-induced strain in Ni–Mn–Ga foams with coarse grains. Acta Mater. 86, 95–101 (2015)

    Article  ADS  Google Scholar 

  23. Zhao, X.G., Tong, M., Shih, C.W., Li, B., Chang, W.C., Liu, W., Zhang, Z.D.: Microstructure, martensitic transitions, magnetocaloric, and exchange bias properties in Fe-doped Ni-Mn-Sn melt-spun ribbons. J. Appl. Phys. 113(17), 17A913 (2013)

    Article  Google Scholar 

  24. Wang, W., Yu, J., Zhai, Q., Luo, Z., Zheng, H.: Origin of retarded martensitic transformation in Heusler Ni–Mn–Sn melt-spun ribbons. Intermetallics 42, 126–129 (2013)

    Article  Google Scholar 

  25. Phan, T.L., Zhang, P., Dan, N.H., Yen, N.H., Thanh, P.T., Thanh, T.D., Phan, M.H., Yu, S.C.: Coexistence of conventional and inverse magnetocaloric effects and critical behaviors in Ni50Mn50−xSnx (x = 13 and 14) alloy ribbons. Appl. Phys. Lett. 101(21), 212403 (2012)

  26. Gschneidner Jr, K.A., Pecharsky, V.K., Tsokol, A.O.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68(6), 1479–1539 (2005)

    Article  ADS  Google Scholar 

  27. Pramanick, S., Chatterjee, S., Giri, S., Majumdar S.: Excess Ni-do** induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy. Appl. Phys. Lett. 105(11), 112407 (2014)

  28. Pathak, A.K., Dubenko, I., Karaca, H.E., Stadler, S., Ali, N.: Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni 50−xCoxMn32−yFeyGa18. Appl. Phys. Lett. 97(6), 062505 (2010)

  29. Sharma, V.K., Chattopadhyay, M.K., Roy, S.B.: Large magnetocaloric effect in Ni50Mn33.66Cr0.34In16alloy. J. Phys. D: Appl. Phys. 43(22), 225001 (2010)

  30. Sánchez Llamazares, J.L., Sanchez, T., Santos, J.D., Pérez, M.J., Sanchez, M.L., Hernando, B., Escoda, L., Suñol, J.J., Varga, R.: Martensitic phase transformation in rapidly solidified Mn 50 Ni 40 In 10 alloy ribbons. Appl. Phys. Lett. 92(1), 012513 (2008)

Download references

Funding

This work is supported by the School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Australia; The China Scholarship Council (No. 201808140031); The Emerging Industry Leadership Talent Program of Shanxi Province (No. 2019042); Scientific and Technological Innovation Projects for Excellent Researchers of Shanxi Province (No. 201805D211042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenghua Chen or Zhengyi Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., **e, H., Huo, M. et al. The Effect of Hysteresis Loss on Magnetic Entropy Change in Highly Textured Mn-Ni–Sn Melt-Spun Ribbons. J Supercond Nov Magn 35, 1025–1031 (2022). https://doi.org/10.1007/s10948-022-06218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06218-4

Keywords

Navigation