Log in

Characterizations of a Novel Structure of Fault-Tolerant HTS Cable

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper presents a type of high temperature superconducting (HTS) cable, which is fabricated by winding the second generation (2G) HTS tapes on round former consisting of stranded stainless steel (SS) wires. It has the advantages of strong flexibility, high mechanical strength, and high engineering current density. With taking the resistivity of SS much larger than that of copper or aluminum, the cable has higher resistance and strength than the conventional HTS cable with former made from copper strands at condition of fault accident. After the configuration of the cable is designed in detail, the quenching resistance and fault current limiting are numerically analyzed. We fabricate a model cable and carry out the experiment of fault current. The experimental results show that the quenching resistance of this cable is much higher than the resistance of conventional underground XLPE cable and overhead conductor, which indicates that the proposed cable has a strong ability of fault current limiting and can be applicable in HTS devices with functions of fault current limiting such HTS cable, transformer, motor/generator, and current limiter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kovalsky, L., et al.: Applications of superconducting fault current limiters in electric power transmission systems. IEEE Trans. Appl. Supercond. 15, 2130–2133 (2005)

    Article  ADS  Google Scholar 

  2. Noe, M., Oswald, B.R.: Technical and economical benefits of superconducting fault current limiters in power systems. IEEE Trans. Appl. Supercond. 9, 1347–1350 (1999)

    Article  ADS  Google Scholar 

  3. Ohtsubo, Y., et al.: Development of REBCO superconducting transformers with a current limiting function fabrication and tests of 6. 9 kV - 400 kVA transformers. IEEE Trans. Appl. Supercond. 25, 5505305 (2014)

    Google Scholar 

  4. Hellmann, S., et al.: Manufacturing of a 1-MVA-class superconducting fault current limiting transformer with recovery-under-load capabilities. IEEE Trans. Appl. Supercond. 27, 5500305 (2017)

    Article  Google Scholar 

  5. Gouge, M.J., et al.: Testing of 3-meter prototype fault current limiting cables. IEEE Trans. Appl. Supercond. 19, 1744–1747 (2009)

    Article  ADS  Google Scholar 

  6. Zhu, J., et al.: Magneto-thermal coupling modeling for the stability analysis of a 110 kV/3 kA high temperature superconducting cable under fault current conditions. J. Supercond. Nov. Magn. 28, 607–613 (2015)

    Article  Google Scholar 

  7. Kozak, J., et al.: Design and tests of coreless inductive superconducting fault current limiter. IEEE Trans. Appl. Supercond. 22, 5601804 (2012)

    Article  Google Scholar 

  8. Hayakawa, N., et al.: Progress in development of superconducting fault current limiting transformer (SFCLT). IEEE Trans. Appl. Supercond. 21, 1397–1400 (2010)

    Article  ADS  Google Scholar 

  9. Takayasu, M., et al.: Conductor characterization of YBCO twisted stacked-tape cables. IEEE Trans. Appl. Supercond. 23, 4800104 (2013)

    Article  Google Scholar 

  10. Wang, J., et al.: Bending characteristics if a quasi-isotropic HTS conductor with high engineering current density. J. Supercond. Nov. Magn. 3, 3001–3007 (2020)

    Article  Google Scholar 

  11. Bruzzone, P., et al.: Test results of a Nb3Sn cable-in-conduit conductor with variable pitch sequence. IEEE Trans. Appl. Supercond. 19, 1448–1451 (2019)

    Article  ADS  Google Scholar 

  12. Weiss, J.D., et al.: Introduction of CORC (R) wires: highly flexible, round high-temperature superconducting wires for magnet and power transmission applications. Supercond. Sci. Technol. 30, 014002 (2017)

    Article  ADS  Google Scholar 

  13. Sytnikov, V.E., et al.: 30 m HTS power cable development and witness sample test. IEEE Trans. Appl. Supercond. 13, 1702–1705 (2009)

    Article  ADS  Google Scholar 

  14. Olsen, S.K., et al.: Loss and inductance investigation in a 4-layer superconducting prototype cable conductor. IEEE Trans. Appl. Supercond. 9, 833–836 (1999)

    Article  ADS  Google Scholar 

  15. Mukoyama, S., et al.: 50-m long HTS conductor for power cable. IEEE Trans. Appl. Supercond. 7, 1069–1072 (1997)

    Article  ADS  Google Scholar 

  16. Mukoyama, S., et al.: Uniform current distribution conductor of HTS power cable with variable tape-winding pitches. IEEE Trans. Appl. Supercond. 9, 1269–1272 (1999)

    Article  ADS  Google Scholar 

  17. Sytnikova, V.E., et al.: Influence of the multilayer HTS-cable conductor design on the current distribution. Physica C: Supercond. 310, 387–391 (1998)

    Article  ADS  Google Scholar 

  18. Wang, Y., et al.: A conceptual design for HTS cable with large current capacity using co-axial configurations. IEEE Trans. Appl. Supercond. 20, 1263–1267 (2010)

    Article  ADS  Google Scholar 

  19. Zhang, H., Zhang, M., Yuan, W.: An efficient 3D finite element method model based on the T–A formulation for superconducting coated conductors. Supercond. Sci. Technol. 30, 4005 (2016)

    Google Scholar 

  20. Wang, Y., et al.: Thermal behavior of quasi-isotropic strand and stacked-tape conductor. J. Supercond. Nov. Magn. 33, 3313–3319 (2020)

    Article  Google Scholar 

  21. Wang, Y., et al.: Study of the magnetization loss of CORC(R) cables using a 3D T-A formulation. Supercond. Sci. Technol. 32, 5003 (2019)

    Google Scholar 

  22. Hemmi, T., et al.: Transient behavior of Bi2223/Ag HTS tape for sharp rising current. IEEE Trans. Appl. Supercond. 12, 1422–1425 (2002)

    Article  ADS  Google Scholar 

  23. Czerwinski, D., et al.: Analysis of alternating overcurrent response of 2G HTS tape for SFCL. IEEE Trans. Appl. Supercond. 24, 5600104 (2014)

    Article  Google Scholar 

  24. Yim, S., et al.: Electrical behavior of Bi-2223/Ag tapes under applied alternating over-currents. IEEE Trans. Appl. Supercond. 15, 2482–2487 (2005)

    Article  ADS  Google Scholar 

  25. Liang, S., et al.: Study on quenching characteristics and resistance equivalent estimation method of second-generation high temperature superconducting tape under different overcurrent. Materials. 12, 2374 (2019)

    Article  ADS  Google Scholar 

  26. Yasuda, M., et al.: Estimation of overcurrent performance in YBCO superconducting thin films for fault-current limiter. IEEE Trans. Appl. Supercond. 15, 2482–2487 (2005)

    Article  ADS  Google Scholar 

  27. Wang, Y.: Fundamentals of superconducting power technology. China Science Publishing, Bei**g (2011)

    Google Scholar 

  28. Weber, C., et al.: Operating results of the Albany (NY) high temperature superconducting cable system, pp. 1–4. IEEE Power Engineering Society General Meeting, Tampa (2007)

    Google Scholar 

Download references

Funding

This work was supported in part by the State Grid under Grant DG71-19-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinshun Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Q., Wang, Y., Qiao, Y. et al. Characterizations of a Novel Structure of Fault-Tolerant HTS Cable. J Supercond Nov Magn 34, 1147–1155 (2021). https://doi.org/10.1007/s10948-021-05825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05825-x

Keywords

Navigation