Log in

Observation of Novel Superparamagnetism in ZnS:Co Quantum Dots

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cobalt-doped zinc sulfide quantum dots with different cobalt concentrations were prepared by the solution route. Structural, optical, morphological, and magnetic responses of the prepared quantum dots were analyzed. X-ray diffraction study confirmed that cubic (zinc blende) structure is the dominant structure of synthesized samples. Crystallite size and lattice constant were found to decrease with cobalt dopant. Transmission electron microscope analysis shows that the mean size of the particles lies in the range of 7–10 nm. The absorption edge of cobalt-doped zinc sulfide nanoparticles is shifted to lower wavelength as compared to that of bulk zinc sulfide which confirmed the quantum confinement effect. The bandgap variation was observed with do**, and it varied from 4.3 to 5.6 eV. The emission spectrum reveals that the cobalt dopant suppresses the ultraviolet emission and enhances the visible emission. Fourier-transform infrared spectrum confirmed the formation of zinc sulfide and the substitution of cobalt ion. Magnetization versus magnetic field result demonstrates that the zinc sulfide and cobalt-doped zinc sulfides are superparamagnetic. Electron spin resonance spectra also confirmed the superparamagnetic nature of zinc sulfide and cobalt-doped zinc sulfide samples. Micro-Raman study also confirmed the incorporation of cobalt in the lattice and the size of the order of the exciton Bohr radius for ZnS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Poornaprakash, B., Chalapathi, U., Poojitha, P.T., Prabhakar Vattikuti, S.V., Park, S.H.: Co-doped ZnS quantum dots: structural, optical, photoluminescence, magnetic, and photocatalytic properties. J. Supercond. Nov. Magn. 33, 539–544 (2020)

    Google Scholar 

  2. Pham, M.T., Ca, N.X., Loan, P.N., Tran, N., Huy, B.T., Dang, N.T., Phan, T.L.: Electronic structure and ferromagnetism in zinc blende Zn1−xCoxS nanoparticles. J. Supercond. Nov. Magn. 32, 1761–1768 (2019)

    Google Scholar 

  3. Manojkumar, K., Prasad, B., Kranthi, Y., Varma, J.S.K., Vinay, K., Amaranatha Reddy, D., Subramanyam, K.: Benchmark analysis on magnetic and photoluminescence properties of selective metal ions doped ZnS nanoparticles. J. Supercond. Nov. Magn. 32, 2489–2500 (2019)

    Google Scholar 

  4. Bhargava, R.N., Gallagher, D.: Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 72, 416 (1994)

    ADS  Google Scholar 

  5. Lin, K.B., Su, Y.H.: Photoluminescence of Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles applied in bio-LED. Appl. Phys. B Lasers Opt. 113, 351–359 (2013)

    ADS  Google Scholar 

  6. Sapra, S., Prakash, A., Ghangrekar, A., Periasamy, N.: Emission properties of manganese-doped ZnS nanocrystals. J. Phy. Chem. B. 109, 1663–1668 (2005)

    Google Scholar 

  7. Corrado, C., Cooper, J.K., Zhang, J.Z.: Cu-doped ZnS nanocrystals: synthesis, structure, and optical properties. Sci. Adv. Mater. 4, 254–265 (2012)

    Google Scholar 

  8. Rivera-Medina, M.J., Hernandez-Torres, J., Boldu-Olaizola, J.L., Barreto-Renteria, J., Hernandez-Alcantara, J.M., Jancik, V., Alonso-Huitron, J.C.: Synthesis of europium-doped ZnS nano-crystalline thin films with strong blue photoluminescence. RSC Adv. 6, 07613–107621 (2016)

    Google Scholar 

  9. Yamamoto, S.: Photoluminescence quenching in cobalt doped ZnO nanocrystals. J. Appl. Phys. 111, 094310 (2012)

    ADS  Google Scholar 

  10. Akhtar, M.S., Alghamdi, Y.G., Malik, M.A., Arif Khalil, R.M., Riaz, S., Naseem, S.: Structural, optical, magnetic and half-metallic studies of cobalt doped ZnS thin films deposited via chemical bath deposition. J. Mater. Chem. C. 3, 6755–6733 (2015)

    Google Scholar 

  11. Salem, J.K., Hammad, T.M., Kuhn, S., Draaz, M.A., Hejazy, N.K., Hempelmann, R.: Structural and optical properties of Co-doped ZnS nanoparticles synthesized by a cap** agent. J. Mater. Sci. Mater. Electron. 25, 2177–2182 (2014)

    Google Scholar 

  12. Bi, C., Pan, L., Xu, M., Yin, J., Qin, L., Liu, J., Zhu, H., **ao, J.Q.: Synthesis and characterization of Co-doped wurtzite ZnS nanocrystals. Mater. Chem. Phys. 116, 363–367 (2009)

    Google Scholar 

  13. Ashok Kumar, R., Geetha, K., Prabukanthan, P.: Synthesis of Co2+ ions doped ZnS nanoparticles by chemical precipitation method and their characterization. Int. J. Chem. Tech. Res. 8, 286–294 (2015)

    Google Scholar 

  14. Poornaprakash, B., Amaranatha Reddy, D., Murali, G., Madhusudhana Rao, N., Vijayalakshmi, R.P., Reddy, B.K.: Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles. J. Alloys Compd. 577, 79–85 (2013)

    Google Scholar 

  15. Ibrahim, R.M., Markom, M., Abd Razak, K.F.: Optical properties of CO2+-doped ZnS nanoparticles synthesized using reverse micelle method. J. Tech. 79, 15 (2017)

    Google Scholar 

  16. Sharma, R.K., Kumar, A., Gautam, S., Goyal, N.: Synthesis and characterization of cobalt doped ZnS nanoparticles. Int. Res. Adv. 3, 26 (2016)

    Google Scholar 

  17. Chen, K., Hou, Q., Dong, X., Zhang, H., Li, Y., Liu, H., Huang, Y., Li, Q.: Structural transformation in Co-doped ZnS nanoparticles. J. Phys. 430, 012077 (2013)

    Google Scholar 

  18. Vijay Anand, K., Vinitha, G., Gautam, S., Chae, K.H., Mohan, R., Asokan, K., Ravindran, T.R., Jayavel, R.: Enhancement of third-order nonlinear optical properties of HMTA stabilized pure and doped ZnS nanoparticles and their electronic structures. J. Nonlin. Opt. Phys & Mater. 27, 1850016 (2018)

    Google Scholar 

  19. Manivannan, N., Chandarshekar, B., SenthilKumaran, C.K.: Punicagranatum flower extract mediated synthesis of copper oxide nanoparticle and evolution of its antibacterial activity. Inter. J. Appl. Pure Sci. Agri. 04, 7–12 (2018)

    Google Scholar 

  20. **, Z., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., Koinuma, H.: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: a series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824–3826 (2001)

    ADS  Google Scholar 

  21. Liu, L., Yang, L., Pu, Y., **ao, D., Zhu, J.: Optical properties of water-soluble Co2+:ZnS semiconductor nanocrystals synthesized by a hydrothermal process. Mater. Lett. 66, 121–124 (2012)

    Google Scholar 

  22. Sarkar, R., Tiwary, C.S., Kumbhakar, P., Mitra, A.K.: Yellow-orange light emission from Mn2+ doped ZnS nanoparticles. Physica B: Conden. Mater. 404, 3855–3858 (2009)

    ADS  Google Scholar 

  23. Zhang, H., Chen, Q., Zhang, H., Rui, W., Ding, Q., Cao, Y., Zhong, W., Shen, K., Du, J., **ang, D., Xu, Q.: Interstitial H+-mediated ferromagnetism in Co-doped ZnS. J. Supercond. Nov. Magn. 28, 1389–1393 (2015)

    Google Scholar 

  24. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta.Cryst. A. 32, 751–767 (1976)

    Google Scholar 

  25. Benyahia, K., Benhaya, A., Aida, M.S.: ZnS thin films deposition by thermal evaporation for photovoltaic applications. J. Semicond. 36, 103001 (2015)

    ADS  Google Scholar 

  26. Kuhs, J., Dobbelaere, T.: Plasma enhanced atomic layer deposition of zinc sulfide thin films. J. Vac. Sci. Technol. 35, 01B111 (2017)

    Google Scholar 

  27. Senados, K.M., Vequizo, R.M.: Effects of thermal annealing on the diode properties and space charge limited conduction of the physical vapor-deposited n-ZnS/p-Si (100) heterojunctions. Mater. Today. 5, 15174–15179 (2018)

    Google Scholar 

  28. Shanmugam, N., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G.: Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J. Nanomater. 7, 351798 (2013)

    Google Scholar 

  29. Reddy, D.A., Murali, G., Poornaprakash, B., Vijayalakshmi, R.P., Reddy, B.K.: Effect of annealing temperature on optical and magnetic properties of Cr doped ZnS nanoparticles. Solid State Commun. 152, 596–602 (2012)

    ADS  Google Scholar 

  30. Wahab, R., Ansari, S.G., Kim, Y.S., Dhage, M.S., Seo, H.K., Song, M., Shin, H.S.: Effect of annealing on the conversion of ZnS to ZnO nanoparticles synthesized by the sol-gel method using zinc acetate and thiourea. Met. Mater. Int. 15, 453 (2009)

    Google Scholar 

  31. Patel, P.C., Ghosh, S., Srivastava, P.C.: Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles. Mater. Res. Bull. 81, 85–92 (2016)

    Google Scholar 

  32. Mahmood, K., Asghar, M., Amin, N., Ali, A.: Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. J. Semicond. 36, 033001 (2015)

    ADS  Google Scholar 

  33. Akhtar, M.S., Malik, M.A., Riaz, S., Naseem, S., Brien, P.O.: Optimizing conditions for the growth of nanocrystalline ZnS thin films from acidic chemical baths. Mater. Sci. Semicond. Process. 30, 292–297 (2015)

    Google Scholar 

  34. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1, 22–31 (1953)

    Google Scholar 

  35. Pathak, C.S., Mandal, M.K., Agarwala, V.: Optical properties of undoped and cobalt doped ZnS nanophosphor. Mater. Sci. Semicond. Process. 16, 467–471 (2013)

    Google Scholar 

  36. Tauc, J., Menth, A.: States in the gap. J. Non-Cryst. Solids. 8, 569–585 (1972)

    ADS  Google Scholar 

  37. Joshi, G.P., Saxena, N.S., Sharma, T.P., Dixit, V., Mishra, S.C.K.: Bandgap determination of chemically doped polyaniline materials from reflectance measurements. Ind. J. Pure. Appl. Phys. 41, 462–446 (2003)

    Google Scholar 

  38. Chattopadhyay, M., Kumbhakar, P., Chatterjee, U.: Observation of two-photon absorption at UV radiation in ZnS quantum dots. Pramana. 82, 327–330 (2014)

    ADS  Google Scholar 

  39. Kumar, S., Verma, N.K.: Room temperature magnetism in cobalt-doped ZnS nanoparticles. J. Supercond. Nov. Magn. 28, 137–142 (2015)

    Google Scholar 

  40. Nguyen, T.P., Lam, Q.V., Vu, T.B.: Effects of precursor molar ratio and annealing temperature on structure and photoluminescence characteristics of Mn-doped ZnS quantum dots. J. Lumin. 196, 359–367 (2018)

    Google Scholar 

  41. Tamrakar, R., Ramrakhiani, M., Chandra, B.P.: Effect of cap** agent concentration on photophysical properties of zinc sulfide nanocrystals. The Open Nanoscience J. 2, 12–16 (2008)

    ADS  Google Scholar 

  42. Viswanath, R., Bhojya Naik, H.S., Yashavanth Kumar, G.S., Prashanth Kumar, P.N., Arun Kumar, G., Praveen, R.: EDTA-assisted hydrothermal synthesis, characterization and photoluminescent properties of Mn2+ doped ZnS. J. Lumin. 153, 446–452 (2014)

    Google Scholar 

  43. Kaur, J., Sharma, M., Pandey, O.P.: Photoluminescence and photocatalytic studies of metal ions (Mn and Ni) doped ZnS nanoparticles. Opt. Mater.(Amst). 47, 7–17 (2015)

    ADS  Google Scholar 

  44. Ghosh, P.K., Ahmed, S.F., Jana, S., Chattopadhyay, K.K.: Photoluminescence and field emission properties of ZnS: Mn nanoparticles synthesized by rf-magnetron sputtering technique. Opt. Mater. (Amst). 29, 1584–1590 (2007)

    ADS  Google Scholar 

  45. Brus, L.: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Google Scholar 

  46. Sathya, M., Pushpanathan, K.: Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl.Surf. Sci. 449, 346–357 (2018)

    ADS  Google Scholar 

  47. Jay Chithra, M., Pushpanathan, K.: Thermal, structural and optical investigation of Cu-doped ZnO nanoparticles. Mod. Phys. Lett. B. 30, 1650406 (2016)

    Google Scholar 

  48. Shionoya, S., Goldberg, P.: Luminescence of inorganic solids, vol. 114, p. 206. Academic, New York (1966)

    Google Scholar 

  49. Mandal, A., Mitra, S., Datta, A., Banerjee, S., Dhara, S., Chakravorty, D.: Multiphonon scattering and photoluminescence of two dimensional ZnS nanosheets grown within Na-4 mica. J. Appl. Phys. 112, 074321 (2012)

    ADS  Google Scholar 

  50. Becker, W.G., Bard, A.J.: Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 87, 4888–4893 (1983)

    Google Scholar 

  51. Kasai, P.H., Otomo, Y.: Electron paramagnetic resonance studies of the ZnS-A and -B centers. J. Chem. Phys. 37, 1262 (1962)

    ADS  Google Scholar 

  52. Biswas, S., Kar, S., Chaudhuri, S.: Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process. J. Phys. Chem. B. 19, 17526–17530 (2005)

    Google Scholar 

  53. Ye, C., Fang, X., Li, G.L., Zhang, L.: Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts. Appl. Phys. Lett. 85, 3035–3037 (2004)

    ADS  Google Scholar 

  54. Jiang, Y., Meng, X.M., Liu, J., **e, Z.Y., Lee, C.S., Lee, S.T.: ZnS nanowires with wurtzite polytype modulated structure. Adv. Mater. 15, 1195–1198 (2003)

    Google Scholar 

  55. Chen, W., Zhang, J.Z., Joly, A.G.: Optical properties and potential applications of doped semiconductor nanoparticles. J. Nanosci. Nanotechnol. 4, 919–947 (2004)

    Google Scholar 

  56. Kim, J.S., Kim, J., Kim, T.W., Kim, S.M., Park, H.L.: Critical thickness of ultrathin ferroelectric BaTiO3 films. Appl. Phys. Lett. 86, 102907 (2005)

    ADS  Google Scholar 

  57. Chitkara, M., Singh, K., Sandhu, I.S., Bhatti, H.S.: Photo-catalytic activity of Zn1-xMnxS nanocrystals synthesized by wet chemical technique. Nanoscale Res. Lett. 6, 438 (2011)

    ADS  Google Scholar 

  58. Brafman, O., Mitra, S.S.: Raman effect in wurtzite- and zinc-blende-type ZnS single crystals. Phys. Rev. 171, 931 (1968)

    ADS  Google Scholar 

  59. Nilsen, W.G.: Raman spectrum of cubic ZnS. Phys. Rev. 182, 838 (1969)

    ADS  Google Scholar 

  60. Panda, S.K., Dutta, A., Chowdhuri, S.: Nearly monodispersed ZnS nanospheres: synthesis and optical properties. Chem. Phys. Lett. 440, 235–238 (2007)

    ADS  Google Scholar 

  61. Bruchhausen, A., Fainstein, A., Jusserand, B., Andre, R.: Universal aspects of nonequilibrium currents in a quantum dot. Phys. Rev. B. 73, 85305 (2006)

    ADS  Google Scholar 

  62. Dhara, S., Arora, A.K., Bera, S., Ghatak, J.: Multiphonon probe in ZnS quantum dots. J. Raman Spectrosc. 41, 1102–1105 (2010)

    ADS  Google Scholar 

  63. Pal, M., Mathews, N.R., Morales, E.R., Graciay Jiménez, J.M., Mathew, X.: Synthesis of Eu+3 doped ZnS nanoparticles by a wet chemical route and its characterization. Opt. Mater. 35, 2664–2669 (2013)

    ADS  Google Scholar 

  64. Schmidt, R.L., Kunc, K., Cardona, M., Bilz, H.: Second-order Raman scattering in II-VI semiconductors: relative intensities and trends. Phys. Rev. B. 20, 3345 (1979)

    ADS  Google Scholar 

  65. **ong, Q., Wang, J., Reese, O., Voon, L.Y., Eklund, P.C.: Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett. 4, 1991–1996 (2004)

    ADS  Google Scholar 

  66. Lide, D.R.: CRC Handbook of Chemistry and Physics, 83rd edn, pp. 4–146 (2002)

    Google Scholar 

  67. Zhao, W., Wei, Z., Zhang, L., Wu, X., Wang, X.J., Jiang, J.: Room temperature ferromagnetic and optical properties of chrome doped ZnS nanorods prepared by hydrothermal method. J. Nanomater. 8, 9378349 (2017)

    Google Scholar 

  68. Patel, P.C., Ghosh, S., Srivastava, P.C.: Effect of impurity concentration on optical and magnetic properties in ZnS:Cu nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 93, 148–152 (2017)

    ADS  Google Scholar 

  69. Kumar, S., Verma, N.K.: Ferromagnetic and weak superparamagnetic like behavior of Ni-doped ZnS nanocrystals synthesized by reflux method. J. Mater. Sci. Mater. Electron. 25, 1132–1137 (2014)

    Google Scholar 

  70. Shobana, M., Meher, S.R.: Effect of cobalt do** on the structural, optical and magnetic properties of sol-gel derived ZnS nanocrystalline thin films and ab initio studies. Thin Solid Films. 683, 97–110 (2019)

    ADS  Google Scholar 

  71. Bi, C., Pan, L.Q., Xu, M., Qin, L.Q., Yin, J.H.: 9th IEEE Conference on Nanotechnology. 874, 26–30 (2009)

  72. Sambasivam, S., Joseph, D.P., Lin, J.G., Venkateswaran, C.: Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles. Mater. Sci. Eng. B. 150, 125 (2008)

    Google Scholar 

  73. Eryong, N., Donglai, L., Yunsen, Z., Xue, B., Liang, Y., Yong, J., Zhifeng, J., **aosong, S.: Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation. Appl. Surf. Sci. 257, 8762–8766 (2011)

    ADS  Google Scholar 

  74. Chawla, S., Sharma, S., Shah, J.: Fabrication of ZnS:Cr nanoparticles with superparamagnetism and fluorescence properties. Mater. Lett. 108, 189–192 (2012)

    Google Scholar 

  75. Patel, S.P., Pivin, J.C., Patel, M.K., Won, J., Chandra, R., Kanjilal, D., Kumar, L.: Defects induced magnetic transition in Co doped ZnS thin films: effects of swift heavy ion irradiations. J. Magn. Magn. Mater. 324, 2136–2141 (2012)

    ADS  Google Scholar 

  76. Rashad, M.M., Rayan, D.A., El-Barawy, K.: Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles. J. Phys. Conf. Ser. 200, 072077 (2010)

    Google Scholar 

  77. Sanchez-Lopez, J.C., Reddy, E.P., Rojas, T.C., Sayagues, M.J., Justo, A., Femandez, A.: Preparation and characterization of CdS and ZnS nanosized particles obtained by the inert gas evaporation method. Nanostruct. Mater. 12, 459–462 (1999)

    Google Scholar 

  78. Dantas, N.O., Damigo, L., Fanyao, Q.U., Silva, R.S., Sartoratto, P.P.C., Miranda, K.L., Vilela, E.C., Pelegrini, F., Morais, P.C.: Structural and magnetic properties of ZnO and Zn1−xMnxO nanocrystals. J. Non-Crys. Solids. 354, 4727–4729 (2008)

    ADS  Google Scholar 

  79. Pivin, J.C., Socol, G., Mihailescu, I., Berthet, P., Singh, F., Patel, M.K., Vincent, L.: Structure and magnetic properties of ZnO films doped with Co, Ni or Mn synthesized by pulsed laser deposition under low and high oxygen partial pressures. Thin Solid Films. 517, 916–922 (2008)

    ADS  Google Scholar 

  80. Jayakumar, O.D., Salunke, H.G., Kadam, R.M., Mohapatra, M., Yaswant, G., Kulshreshtha, S.K.: Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnol. 17, 1278 (2006)

    ADS  Google Scholar 

  81. Srinivas, K., Rao, S.M., Reddy, P.V.: Preparation and properties of Zn0.9Ni0.1O diluted magnetic semiconductor nanoparticles. J. Nano Part. Res. 13, 817–837 (2011)

    ADS  Google Scholar 

Download references

Acknowledgement

Authors thank SAIF IIT(M) for providing VSM analysis and STIC−Cochin for providing TEM experimental facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pushpanathan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsi, S., Mohanapriya, S. & Pushpanathan, K. Observation of Novel Superparamagnetism in ZnS:Co Quantum Dots. J Supercond Nov Magn 33, 3223–3240 (2020). https://doi.org/10.1007/s10948-020-05573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05573-4

Keywords

Navigation