Log in

Tuning the efficiency of Random Laser Generation in a Suspension of ZnO Nanoparticles by Means of its Directional Freezing

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this paper, we introduce a novel approach to control the random lasing based on multiphoton luminiscence in Zinc oxide (ZnO) nanoparticle water suspension during its guided freezing process. The freezing process leads to the formation of a particle layer on the ice surface, consequently reducing the photon’s scattering mean free path in the medium, as well as increase in the efficiency of the second harmonic generation. This results in a lowered random lasing threshold in the system. The post freezing threshold, under the 355 nm wavelength excitation, decreases by an order of magnitude. These effects may have several applications, including the phase transition sensing, monitoring the evolution of porous structures via the ice-templating technique, controlling the random lasing mode, and enhancing various nonlinear optical processes’ effectiveness for nanoparticles and sub-micron particles in suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, et al., J. Appl. Phys., 98, 041301 (2005); https://doi.org/10.1063/1.1992666

  2. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer (1999); https://doi.org/10.1007/978-3-662-03848-2

    Article  Google Scholar 

  3. F. Rahman, Opt. Eng., 58, 010901 (2019); https://doi.org/10.1117/1.oe.58.1.010901

  4. R. Könenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett., 85, 6004 (2004); https://doi.org/10.1063/1.1836873

  5. R. Sha, A. Basak, P. C. Maity, and S. Badhulika, Sens. Actuator. Rep., 4, 100098 (2022); https://doi.org/10.1016/j.snr.2022.100098

  6. B. Ortiz-Casas, A. Galdámez-Martínez, J. Gutiŕrez-Flores, et al., Mater. Today, 50, 553 (2021); https://doi.org/10.1016/j.mattod.2021.07.025

  7. A. Wibowo, M. A. Marsudi, M. I. Amal, et al., RSC Adv., 10, 42838 (2020); https://doi.org/10.1039/d0ra07689a

  8. D. S. Wiersma, Nat. Phys., 4, 359 (2008).

    Article  Google Scholar 

  9. B. Redding, M. A. Choma, and H. Cao, Nat. Photonics, 6, 355 (2012); https://doi.org/10.1038/nphoton.2012.90

  10. V. S. Letokhov, Sov. Phys. JETP, 26, 835 (1967).

    ADS  Google Scholar 

  11. E. K. Kazakova, A. V. Kraiskii, V. A. Zubov, et al., Bull. Lebedev Phys. Inst., 7, 42 (1970) [in Russian].

    Google Scholar 

  12. V. A. Zubov, G. V. Peregudov, M. M. Sushchinskii, et al., Sov. J. Exp. Theor. Phys. Lett., 5, 188 (1967).

    Google Scholar 

  13. G. V. Peregudov, E. N. Ragozin, and V. A. Chirkov, Sov. J. Exp. Theor. Phys., 63, 421 (1972).

    Google Scholar 

  14. V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, Sov. J. Quantum Electron., 13, 427 (1986).

    Google Scholar 

  15. M. S. Steinberg, E. Sondheimer, A. H. Wilson, et al., Phys. Rev., 109, 1492 (1958); https://doi.org/10.1103/PhysRev.109.1492

  16. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature, 390, 671 (1997); https://doi.org/10.1038/37757

  17. H. Cao, J. Y. Xu, Y. Ling, et al., IEEE J. Sel. Top. Quantum Electron., 9, 111 (2003); https://doi.org/10.1109/JSTQE.2002.807975

  18. R. Sapienza, Nat. Rev. Phys., 1, 690 (2019); https://doi.org/10.1038/s42254-019-0113-8

  19. H. Cao, Y. G. Zhao, S. T. Ho, et al., Phys. Rev. Lett., 82, 2278 (1999); https://doi.org/10.1103/PhysRevLett.82.2278

  20. L. Fedorenko, V. Litovchenko, V. Naumov, et al., Coatings, 12, 1705 (2022); https://doi.org/10.3390/coatings12111705

  21. A. C. Vutha, S. K. Tiwari, and R. K. Thareja, J. Appl. Phys., 99, 123509 (2006); https://doi.org/10.1063/1.2206608

  22. H. Jiu and L. Zhang, J. Rare Earths, 27, 786 (2009); https://doi.org/10.1016/S1002-0721(08)60335-X

  23. P. N. Prasad, Introduction to Biophotonics, Wiley (2003); https://doi.org/10.1002/0471465380

    Article  ADS  Google Scholar 

  24. D. A. Parthenopoulos and P. M. Rentzepis, Science, 245, 843 (1989); https://doi.org/10.1126/science.245.4920.843

  25. M. Albota, D. Beljonne, J. L. Brédas, et al., Science, 281, 1653 (1998); https://doi.org/10.1126/science.281.5383.1653

  26. J. Tian, G. Weng, Y. Wang, et al., ACS Appl. Nano Mater., 2, 1909 (2019); https://doi.org/10.1021/acsanm.8b02300

  27. C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, Phys. Rev. B, 65, 041103(R) (2002); https://doi.org/10.1103/PhysRevB.65.041103

    Article  ADS  Google Scholar 

  28. T. Sun, Z. R. Qiu, H. M. Su, et al., Appl. Phys. Lett., 91, 241110 (2007); https://doi.org/10.1063/1.2824395

  29. T. Naruta, T. Akita, Y. Uchida, et al., Opt. Express, 27, 24426 (2019); https://doi.org/10.1364/oe.27.024426

  30. M. Trivedi, D. Saxena, W. K. Ng, et al., Nat. Phys., 18, 939 (2022); https://doi.org/10.1038/s41567-022-01656-2

  31. J. You, J. Wang, L. Wang, et al., Colloids Surf. A Physicochem. Eng. Asp., 531, 93 (2017); https://doi.org/10.1016/j.colsurfa.2017.07.073

  32. G. Shao, D. A. H. Hanaor, X. Shen, and A. Gurlo, Adv. Mater., 32, 1907176 (2020); https://doi.org/10.1002/adma.201907176

  33. A. A. Matrokhin, M. A. Shevchenko, S. F. Umanskaya, et al., Photonics, 9, 705 (2022); https://doi.org/10.3390/photonics9100705

  34. J. M. Hvam, Solid State Commun., 12, 95 (1973); https://doi.org/10.1016/0038-1098(73)90513-9

  35. J. M. Hvam, Phys. Status Solidi B Basic Res., 63, 511 (1974); https://doi.org/10.1002/pssb.2220630210

  36. C. Klingshirn, Phys. Status Solidi B Basic Res., 71, 547 (1975); https://doi.org/10.1002/pssb.2220710216

  37. B. Hönerlage, C. Klingshirn, and J. B. Grun, Phys. Status Solidi B Basic Res., 78, 599 (1976); https://doi.org/10.1002/pssb.2220780219

  38. H. Haug and S. Koch, Phys. Status Solidi B Basic Res., 82, 531 (1977); https://doi.org/10.1002/pssb.2220820216

  39. C. Klingshirn and H. Haug, Phys. Rep., 70, 315 (1981); https://doi.org/10.1016/0370-1573(81)90190-3

  40. R. Matsuzaki, H. Soma, K. Fukuoka, et al., Phys. Rev. B, 96, 125306 (2017); https://doi.org/10.1103/PhysRevB.96.125306

  41. J. Dai, C. X. Xu, P. Wu, at al., Appl. Phys. Lett., 97, 011101 (2010); https://doi.org/10.1063/1.3460281

  42. S. H. Lee, T. Goto, H. Miyazaki, and T. Yao, Opt. Lett., 38, 2413 (2013).

    Article  ADS  Google Scholar 

  43. Y. Rho, S. J. Yoo, D. B. Durham, at al., Nano Lett., 23, 1843 (2023); https://doi.org/10.1021/acs.nanolett.2c04748

  44. M. A. Shevchenko, S. F. Umanskaya, S. D. Abdurakhmonov, et al., Bull. Lebedev Phys. Inst., 49, 55 (2022); https://doi.org/10.3103/S1068335622020075

  45. P. W. Anderson, Philos. Mag. B, 52, 505 (1985); https://doi.org/10.1080/13642818508240619

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Tcherniega.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umanskaya, S.F., Shevchenko, M.A., Tcherniega, N.V. et al. Tuning the efficiency of Random Laser Generation in a Suspension of ZnO Nanoparticles by Means of its Directional Freezing. J Russ Laser Res 44, 691–699 (2023). https://doi.org/10.1007/s10946-023-10179-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10179-x

Keywords

Navigation