Log in

X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We use Letokhov’s concept of stochastic feedback to interpret experiments on X-ray spontaneous emission from a polydisperse plasma of a nanosecond vacuum discharge (NVD) with a virtual cathode. We develop a diffusion model of stochastic propagation of spontaneous X-ray radiation in the volume of randomly located reflecting clusters. The model provides qualitative explanation of both the experimentally observed effects of partial “trap**” and high-intensity bursts of X-ray quanta. The X-ray burst regime is a result of the photon density accumulation which, due to diffusion inside the inter-electrode volume, exceeds the losses from the surface, while the trap** regime corresponds to the slow develo** diffusion, which characteristic time is larger than the discharge duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Letokhov, Zh. Éksp. Teor. Fiz., 53, 1442 (1968) [Sov. Phys. JETP, 26(4), 835 (1968)].

  2. H. Cao, Opt. Photon. News, 16, 24 (2005).

    Article  ADS  Google Scholar 

  3. D. S. Wiersma, Nat. Phys., 4, 359 (2008).

    Article  Google Scholar 

  4. D. S. Wiersma and A. Lagendijk, Phys. World, 10, 33 (1997).

    Article  Google Scholar 

  5. M. P. van Albada, B. A. van Tiggen, A. Lagendijk, and A. Tip, Phys. Rev. Lett., 66, 3132 (1991).

    Article  ADS  Google Scholar 

  6. N. M. Lavandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, Nature, 368, 436 (1994).

    Article  ADS  Google Scholar 

  7. V. S. Letokhov, Quantum Electron., 32(12), 1065 (2002).

    Article  ADS  Google Scholar 

  8. H. Cao, “Random laser – Physics and application,” contribution to the Workshop on Coherent Phenomena in Disordered Optical Systems, Trieste, Italy, 26–30 May, 2014.

  9. Yu. K. Kurilenkov, I. V. Smetanin, A. V. Oginov, and I. S. Samoylov, J. Russ. Laser Res., 5, 491 (2020).

  10. K. Vegso, P. Siffalovic, M. Benkovicova, et al., Nanotechnology, 23, 045704 (2012).

    Article  ADS  Google Scholar 

  11. L. Chitu, P. Siffalovic, E. Majkova, et al., Meas. Sci. Rev., 10, 162 (2010).

    Article  Google Scholar 

  12. M. Suleiman, C. Borchers, M. Guerdane, et al., Z. Phys. Chem., 223, 169 (2009).

    Article  Google Scholar 

  13. Yu. K. Kurilenkov, M. Skowronek, and J. Dufty. J. Phys. A: Math. Theor., 39, 4375 (2006).

    Article  ADS  Google Scholar 

  14. Yu. K. Kurilenkov and M. Skowronek, Plasma Phys. Rep., 36, 1219 (2010).

    Article  ADS  Google Scholar 

  15. Yu. K. Kurilenkov , V. P. Tarakanov, S. Yu. Gus’kov, et al., J. Phys. A: Math. Theor., 42, 214041 (2009).

    Article  ADS  Google Scholar 

  16. Yu. K. Kurilenkov, V. P. Tarakanov, S. Yu. Gus’kov, et al., Contrib. Plasma Phys., 51, 427 (2011).

    Article  ADS  Google Scholar 

  17. O. A. Lavrent’ev, Ann. N.Y. Acad. Sci., 251, 152 (1975).

    Article  ADS  Google Scholar 

  18. G. H. Miley and S. K. Murali, Inertial Electrostatic Confinement Fusion, Springer, New York (2014).

    Book  Google Scholar 

  19. S. K. Murali, “Inertial electrostatic confinement (IEC) based compact X-ray source,” in: NASA In-Space Inspection Technology Workshop, ISIW 2014, July15, 16, JSC Gilruth Center, Houston, TX, USA (2014).

    Google Scholar 

  20. Yu. K. Kurilenkov, V. P. Tarakanov, V. T. Karpukhin, et al., J. Phys.: Conf. Ser., 653, 012025 (2015).

    Google Scholar 

  21. Yu. K. Kurilenkov, V. P. Tarakanov, S. Yu. Gus’kov, et al., J. Phys.: Conf. Ser., 653, 012026 (2015).

    Google Scholar 

  22. W. C. Elmore, J. L. Tuck, and K. M. Watson. Phys. Fluids, 2, 239 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Cao, J. Phys. A: Math. Gen., 38, 10497 (2005).

    Article  ADS  Google Scholar 

  24. S. K. Turitsyn, S. A. Babin, D. V. Churkin, et al., Phys. Rep., 542, 133 (2014).

    Article  ADS  Google Scholar 

  25. X. Du, H. Zhang, H. **ao, et al., Ann. Phys., 528, 649 (2016).

    Article  Google Scholar 

  26. A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors, The University of Chicago Press, Chicago, Illinois, USA (1958).

    Google Scholar 

  27. B. L. Henke, E. M. Gullikson, and J. C. Davis, Atomic Data and Nuclear Data Tables, 54, 181 (1993).

    Article  ADS  Google Scholar 

  28. M. A. Blokhin and I. G. Schweizer, Handbook of X-ray Spectra, Nauka, Moscow (1982) [in Russian].

    Google Scholar 

  29. L. Halperin, Rev. Mod. Phys., 58, 533 (1986).

    Article  ADS  Google Scholar 

  30. Yu. P. Petrov, Clusters and Small Particles, Nauka, Moscow (1986) [in Russian].

    Google Scholar 

  31. A. S. A. Mohammed, A. Carino, and A. Testino, J. Appl. Cryst., 52, 344 (2019).

    Article  Google Scholar 

  32. A. Y. Varaksin, High Temperature, 58, 595 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Smetanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smetanin, I.V., Kurilenkov, Y.K., Oginov, A.V. et al. X-Ray Bursts from a Random Cavity Emerging in an Inter-Electrode Polydisperse Plasma of Nanosecond Vacuum Discharge. II. Diffusion Model of X-Ray Emission. J Russ Laser Res 41, 608–615 (2020). https://doi.org/10.1007/s10946-020-09915-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09915-4

Keywords

Navigation