Log in

Pure Mg foams stabilized by CaO particles

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Pure Mg foams stabilized by ex-situ added CaO particles were developed in this study. Mg/xCaO foams (x = 5, 7 and 10 wt.%) exhibited uniform pore distribution, thinner yet stable pore wall cross-sections. Mg-Ca-O transition phase and MgO particles were formed at the interface of Mg-CaO, which improved the wetting of CaO particles in the Mg melt. The CaO particles, Mg-Ca-O transition phase and blocky MgO particles collectively stabilized the foam. Mg-Ca-O and MgO phases disperse along the gas-liquid interface of foams thereby preventing from wrinkling of interfaces during solidification. TEM analysis of Mg/10wt.% CaO foam powder also confirmed the formation of nano-sized (~ 200 nm) MgO particles of different morphologies. TG-DSC analysis confirmed the exothermic Mg-CaO reaction at 610 ºC, resulting in formation of Mg2Ca and MgO phases, as identified using XRD analysis. 7 wt.% CaO addition exhibited the best foam structure in terms of mean pore diameter (2.19 mm) and circularity (0.75). The lowest foam density of 0.38 g/cm3 and relative density of 21 % was achieved in case of Mg/10wt.% CaO foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. X. **a, W. Zhao, Z. Wei, Z. Wang, Mater. Des. 42, 32 (2012). https://doi.org/10.1016/j.matdes.2012.05.011

    Article  CAS  Google Scholar 

  2. J. Banhart, Adv. Eng. Mater. 8, 781 (2006). https://doi.org/10.1002/adem.200600071

    Article  CAS  Google Scholar 

  3. T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, MRS Proc. 521, 133 (1998). https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G

  4. T. Wang, X. Zuo, Y. Zhou, Z. Liu, J. Mater. Res. Technol. 11, 1991 (2021). https://doi.org/10.1016/j.jmrt.2021.02.038

  5. Y. Song, D. Liu, W. Tang, K. Dong, D. Shan, E.H. Han, J. Magnes Alloy. 9, 1220 (2021). https://doi.org/10.1016/j.jma.2020.05.018

    Article  CAS  Google Scholar 

  6. D. Bhosale, A. Devikar, S. Sasikumar, G.S. Vinod Kumar, Metall. Mater. Trans. B 52, 931 (2021). https://doi.org/10.1007/s11663-021-02066-0

    Article  CAS  Google Scholar 

  7. A. Devikar, D. Bhosale, K. Georgy, M. Mukherjee, G.S. Vinod Kumar, Mater. Sci. Eng. B 286, 116007 (2022). https://doi.org/10.1016/j.mseb.2022.116007

    Article  CAS  Google Scholar 

  8. A. Devikar, B. Muduli, M. Mukherjee, G.S.V. Kumar, J. Mater. Eng. Perform. 32, 2700 (2022). https://doi.org/10.1007/s11665-022-07369-0

    Article  CAS  Google Scholar 

  9. S. Sasikumar, K. Georgy, M. Mukherjee, G.S.V. Kumar, Mater. Sci. Eng. A 849, 143501 (2022). https://doi.org/10.1016/j.msea.2022.143501

    Article  CAS  Google Scholar 

  10. S. Bhogi, J. Nampoothiri, K.R. Ravi, M. Mukherjee, Mater. Sci. Eng. A 685, 131 (2017). https://doi.org/10.1016/j.msea.2016.12.127

    Article  CAS  Google Scholar 

  11. G.S. Vinod Kumar, K. Heim, F. Garcia-Moreno, J. Banhart, A.R. Kennedy, Adv. Eng. Mater. 15, 129 (2013). https://doi.org/10.1002/adem.201200122

    Article  CAS  Google Scholar 

  12. G.S. Vinod Kumar, K. Heim, F. Garcia-Moreno, J. Banhart, A.R. Kennedy, Int. J. Mater. Res. 106, 978 (2015). https://doi.org/10.3139/146.111255

    Article  Google Scholar 

  13. D. Bhosale, K. Georgy, M. Mukherjee, G.S.V. Kumar, J. Mater. Res. Technol. 28, 4012 (2024). https://doi.org/10.1016/j.jmrt.2024.01.039

    Article  Google Scholar 

  14. N. Sahoo, S.K. Panigrahi, Mater. Des. 109, 300 (2016). https://doi.org/10.1016/j.matdes.2016.07.024

    Article  CAS  Google Scholar 

  15. V.M. Sreekumar, R.M. Pillai, B.C. Pai, M. Chakraborty, Appl. Phys. Mater. Sci. Process. 90, 745 (2008). https://doi.org/10.1007/s00339-007-4357-2

    Article  CAS  Google Scholar 

  16. A. Devikar, A. Chanda, D. Bhosale, S. Singh, G.S.V. Kumar, J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08888-0

    Article  Google Scholar 

  17. R. Schmid-Fetzer, A. Kozlov, B. Wiese, C.L. Mendis, D. Tolnai, K.U. Kainer, N. Hort, in Magnes. Technol., edited by A. Singh, K. Solanki, M. V. Manuel, and N. R. Neelameggham (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2016), pp. 67–72. https://doi.org/10.1002/9781119274803.ch15

  18. S.-M. Liang, A. Kozlov, R. Schmid-Fetzer, Int. J. Mater. Res. 109, 185 (2018). https://doi.org/10.3139/146.111596

    Article  CAS  Google Scholar 

  19. S.H. Ha, J.K. Lee, S.K. Kim, Mater. Trans. 49, 1081 (2008). https://doi.org/10.2320/matertrans.MC200786

    Article  CAS  Google Scholar 

  20. S.H. Ha, J.K. Lee, H.H. Jo, S.B. Jung, S.K. Kim, Rare Met. 25, 150 (2006). https://doi.org/10.1016/S1001-0521(08)60071-6

    Article  Google Scholar 

  21. J. Zhao, C. You, M. Chen, S. Lyu, D. Tie, H. Liu, J. Alloys Compd. 886, 160970 (2021). https://doi.org/10.1016/j.jallcom.2021.160970

    Article  CAS  Google Scholar 

  22. Y. Wang, Z. Fan, X. Zhou, G.E. Thompson, Philos. Mag Lett. 91, 516 (2011). https://doi.org/10.1080/09500839.2011.591744

    Article  CAS  Google Scholar 

  23. T. Mondal, N.W. Mukherjee, A. Finch, M.Z. Saha, T.A. Gao, Palmer, T. DebRoy, Mater. (Basel). 16 (2023). https://doi.org/10.3390/ma16010050

  24. B. Wiese, The Effect of CaO on Magnesium and Magnesium Calcium Alloys, Clausthal University of Technology, 2017. https://dokumente.ub.tu-clausthal.de/servlets/MCRFileNodeServlet/clausthal_derivate_00000279/Db113188.pdf. Acessed on 30 Nov. 2023

  25. S. Wang, Y. Wang, Q. Ramasse, Z. Fan, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 51, 2957 (2020). https://doi.org/10.1007/s11661-020-05740-1

    Article  CAS  Google Scholar 

  26. B. Lee, Corros. Sci. 70, 243 (2013). https://doi.org/10.1016/j.corsci.2013.01.036

    Article  CAS  Google Scholar 

  27. A. Jones, Principles and Prevention of Corrosion, 2nd ed. (1996)

  28. Q. Tan, A. Atrens, N. Mo, M.X. Zhang, Corros. Sci. 112, 734 (2016). https://doi.org/10.1016/j.corsci.2016.06.018

    Article  CAS  Google Scholar 

  29. Q. Tan, Y. Yin, N. Mo, M. Zhang, A. Atrens, Surf. Innov. 7, 71 (2019). https://doi.org/10.1680/jsuin.18.00062

    Article  Google Scholar 

  30. M. Mezbahul-Islam, A.O. Mostafa, M. Medraj, J. Mater. 2014, 1 (2014). https://doi.org/10.1155/2014/704283

  31. B.S. You, W.W. Park, I.S. Chung, Scr. Mater. 42, 1089 (2000). https://doi.org/10.1016/S1359-6462(00)00344-4

    Article  CAS  Google Scholar 

  32. D.B. Lee, L.S. Hong, Y.J. Kim, Mater. Trans. 49, 1084 (2008). https://doi.org/10.2320/matertrans.MC200799

    Article  CAS  Google Scholar 

  33. H. Kawabata, Y. Yagi, Y. Aoki, H. Kato, K. Kitayama, K. Hibi, Mater. Trans. 59, 272 (2018). https://doi.org/10.2320/matertrans.M2017288

    Article  CAS  Google Scholar 

  34. S.M. Liang, R. Schmid-Fetzer, J. Eur. Ceram. Soc. 38, 4768 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.06.015

    Article  CAS  Google Scholar 

  35. K. Heim, G.S. Vinod-Kumar, F. García-Moreno, J. Banhart, J. Mater. Sci. 52, 6401 (2017). https://doi.org/10.1007/s10853-017-0874-3

    Article  CAS  Google Scholar 

  36. C.C. Yang, H. Nakae, J. Mater. Process. Technol. 141, 202 (2003). https://doi.org/10.1016/S0924-0136(02)01048-8

    Article  CAS  Google Scholar 

  37. A. Le Febvrier, J. Jensen, P. Eklund, J. Vac Sci. Technol. Vacuum Surf. Film. 35 (2017). https://doi.org/10.1116/1.4975595

  38. Y. Luo, X. Wang, W. Guo, M. Rohwerder, J. Electrochem. Soc. 162, C294 (2015). https://doi.org/10.1149/2.1101506jes

    Article  CAS  Google Scholar 

  39. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1, 11002 (2013). https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  40. Y. Wang, G. Peng, Z. Fan, in Magnes. Technol., ed. by K. Solanki, D. Orlov, A. Singh, and N. Neelameggham, Springer, Cham, (2017), pp. 99–106. https://doi.org/10.1007/978-3-319-52392-7_17

  41. Z. Fan, F. Gao, Y. Wang, S.H. Wang, J.B. Patel, J. Magnes Alloy. 10, 2919 (2022). https://doi.org/10.1016/j.jma.2022.10.006

    Article  CAS  Google Scholar 

  42. N. Babcsán, G.S.V. Kumar, B.S. Murty, J. Banhart, Trans. Indian Inst. Met. 60, 127 (2007)

    Google Scholar 

  43. S. Bhogi, V. Pamidi, J. Nampoothiri, K.R. Ravi, M. Mukherjee, Mater. Sci. Eng. A 858, 144187 (2022). https://doi.org/10.1016/j.msea.2022.144187

    Article  CAS  Google Scholar 

  44. S.V. Kumar, M. Chakraborty, F. Garcia-Moreno, J. Banhart, Metall. Mater. Trans. Phys. Metall. Mater. Sci. 42, 2898 (2011). https://doi.org/10.1007/s11661-011-0709-9

    Article  CAS  Google Scholar 

  45. S. Bhogi, B. Muduli, M. Mukherjee, Mater. Sci. Eng. A 791, 139581 (2020). https://doi.org/10.1016/j.msea.2020.139581

    Article  CAS  Google Scholar 

  46. A. Haibel, A. Rack, J. Banhart, Appl. Phys. Lett. 89, 154102 (2006). https://doi.org/10.1063/1.2357931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB, India for funding this research under the project EMR/2016/006207. The authors are grateful to Dr. Manas Mukherjee and Mr. Soumith Yadav for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

AD: Conceptualization, Methodology, Experimentation, Investigation, Visualization, Figure Preparation, Manuscript Writing, Revision.GSVK: Conceptualization, Methodology, Investigation, Visualization, Manuscript Writing, Revision.

Corresponding author

Correspondence to G.S. Vinod Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devikar, A., Kumar, G.V. Pure Mg foams stabilized by CaO particles. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01609-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01609-5

Keywords

Navigation