Log in

Synthesis of activated carbon from biodiesel waste as a sustainable environmental method using microwave heating

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

There is a significant concern about the increased by-products generated by the high demand for biodiesel. Therefore, reducing the consequences of waste disposal is particularly important, transforming such waste into materials with added value. In this work, activated carbons (ACs) were prepared from biodiesel waste (crude glycerin) by chemical activation, and microwaves as the energy source in the thermal conversion using full factorial experimental designs. The crude glycerin was impregnated with H3PO4 and activated in a N2 atmosphere. The results showed that the activation time is a critical factor in the specific surface area (SBET), and the impregnation ratio is a significant factor in the total pore volume (V0.95). The best AC was obtained at 1000 W, the activation time of 12 min, and the impregnation ratio of 1:3 (mglycerin:mH3PO4), resulting in 500 mg−1 and 0.55 cmg−1 for SBET and V0.95, respectively. In addition, the obtained ACs showed a maximum adsorption capacity of about 55 mg g−1 for amoxicillin. Thus, crude glycerin was a promisor raw material for preparing ACs using the microwave as a heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Dissertation, Thais Aline Prado Mendonça, Utilização de micro-ondas para preparação de materiais carbonosos a partir de diferentes resíduos. http://repositorio.unifesp.br/handle/11600/58715 .

References

  1. V. Gupta, L. Singh, M. Chaudhary, S. Kushwaha, A novel approach to develop activated carbon by an ingenious hydrothermal treatment methodology using Phyllanthus emblica fruit stone. J. Clean. Prod. 288, 125643 (2021)

    Article  Google Scholar 

  2. Y. Luo, D. Li, Y. Chen, X. Sun, Q. Cao, X. Liu, The performance of phosphoric acid in the preparation of activated carbon-containing phosphorus species from rice husk residue. J. Mater. Sci. 54, 5008–5021 (2018)

    Article  Google Scholar 

  3. K. Wan, H. Chen, P. Li, D. Duan, B. Niu, Y. Zhang, D. Long, Thermo-catalytic conversion of waste plastics into surrogate fuels over spherical activated carbon of long-life durability. Waste Manag 148, 1–11 (2022)

    Article  CAS  PubMed  Google Scholar 

  4. A.T. Adeleye, A.A. Akande, C.K. Odoh, M. Philip, T.T. Fidelis, P.I. Amos, O.O. Banjoko, Efficient synthesis of bio-based activated carbon (AC) for catalytic systems: A green and sustainable approach. J. Ind. Eng. Chem. 96, 59–75 (2021)

    Article  CAS  Google Scholar 

  5. K.-H. Kim, D.-Y. Shin, H.-J. Ahn, Ecklonia cava based mesoporous activated carbon for high-rate energy storage devices. J. Ind. Eng. Chem. 84, 393–399 (2020)

    Article  CAS  Google Scholar 

  6. J. Serafin, M. Ouzzine, O.F. Cruz Jr., J. Srenscek-Nazzal, I. Campello Gomez, F.Z. Azar, C.A. Rey Mafull, D. Hotza, C.R. Rambo, Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Manag 136, 273–282 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. D. Duan, Z. Feng, Y. Zhang, T. Zhou, Z. Xu, Q. Wang, Y. Zhao, C. Wang, R. Ruan, Corncob pyrolysis: Improvement in hydrocarbon group types distribution of bio oil from co-catalysis over HZSM-5 and activated carbon. Waste Manag 141, 8–15 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. P. Gao, Y. Zhang, J. Du, H. Sui, L. He, Preparation and application of porous activated carbon using phenolic distillation residue. J. Mater. Sci. 56, 16902–16915 (2021)

    Article  CAS  Google Scholar 

  9. R.K. Liew, E. Azwar, P.N.Y. Yek, X.Y. Lim, C.K. Cheng, J.-H. Ng, A. Jusoh, W.H. Lam, M.D. Ibrahim, N.L. Ma, S.S. Lam, Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresour. Technol. 266, 1–10 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. M.J. Prauchner, K. Sapag, F. Rodríguez-Reinoso, Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 110, 138–147 (2016)

    Article  CAS  Google Scholar 

  11. L.Y. Li, X. Gong, O. Abida, Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. Waste Manag 87, 375–386 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. W. Ao, J. Fu, X. Mao, Q. Kang, C. Ran, Y. Liu, H. Zhang, Z. Gao, J. Li, G. Liu, J. Dai, Microwave assisted preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 92, 958–979 (2018)

    Article  CAS  Google Scholar 

  13. Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali, M. Sillanpää, Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18, 393–415 (2020)

    Article  CAS  Google Scholar 

  14. B.R. Reddy, I. Ashok, R. Vinu, Preparation of carbon nanostructures from medium and high ash Indian coals via microwave-assisted pyrolysis. Adv. Powder Technol. 31, 1229–1240 (2020)

    Article  CAS  Google Scholar 

  15. L. Dawei, W. Yu, Z. Jiaojiao, W. Jicheng, L. **aoyang, T. Yuanyu, Z. Zongbo, Q. Yingyun, W. Ling, L. Junhua, W. Ling, Drying before microwave-assisted H3PO4 activation to produce highly mesoporous activated carbons. Mater. Lett. 230, 61–63 (2018)

    Article  Google Scholar 

  16. S. Cheng, S. Zhao, B. **ng, Y. Liu, C. Zhang, H. **a, Preparation of magnetic adsorbent-photocatalyst composites for dye removal by synergistic effect of adsorption and photocatalysis. J. Clean. Prod. 1, 348 (2022)

    Google Scholar 

  17. H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution. J. Hazard. Mater. 166, 1514–1521 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. X. Duan, C. Srinivasakannan, X. Wang, F. Wang, X. Liu, Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. J. Taiwan Inst. Chem. Eng. 70, 374–381 (2017)

    Article  CAS  Google Scholar 

  19. S. Cheng, Y. Liu, B. **ng, X. Qin, C. Zhang, H. **a, Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. J. Clean. Prod. 314, 128074 (2021)

  20. C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue, L.D. Prola, M. Puchana-Rosero, F.M. Machado, F.A. Pavan, G. Dotto, Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. J. Hazard. Mater. 289, 18–27 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. D.N. Faria, D.F. Cipriano, M.A. Schettino Jr., A.C. Neto, A g. Cunha, T.R. Lopes, J.C. Freitas, Study of thermal transformations in Na, Ca-based catalysts supported on activated carbon and their application in the synthesis of biodiesel from soybean oil. J. Environ. Chem. Eng. 8, 104208 (2020)

    Article  CAS  Google Scholar 

  22. BiodieselBR.com, Brasil produziu 6,76 bi de litros de biodiesel em 2021 (2022)

  23. D. Spataru, A.P. Soares Dias, L.F. Vieira Ferreira, Acetylation of biodiesel glycerin using glycerin and glucose derived catalysts, J. Clean. Prod. 297, 126686 (2021)

  24. V.A. Lourenço, W.C. Nadaleti, B.M. Vieira, H. Chua, Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil. Renew. Sustain. Energy Rev. 149, 111331 (2021)

    Article  Google Scholar 

  25. W. Nadaleti, V. Lourenço, P. Kardasz, L. Sitnik, P. Iljaszewicz, R. Wróbel, R. Dimitrov, W. Macek, Z. Ivanov, Generation of biodiesel and glycerol from waste of rice industries in Brazil, AIP Conference Proceedings, AIP Publishing LLC, pp. 020016 (2021)

  26. Y. Cui, J.D. Atkinson, Glycerol-derived magnetic mesoporous Fe/C composites for Cr(VI) removal, prepared via acid-assisted one-pot pyrolysis. Chemosphere 228, 694–701 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Cui, J.D. Atkinson, Tailored activated carbon from glycerol: role of acid dehydrator on physiochemical characteristics and adsorption performance. J. Mater. Chem. A 5, 16812–16821 (2017)

    Article  CAS  Google Scholar 

  28. M.A. Medeiros, J.D. Ardisson, R.M. Lago, Preparation of magnetic mesoporous composites from glycerol and iron(III) salt. J. Chem. Technol. Biotechnol. 95, 1038 (2019)

  29. M.d.A. Medeiros, T.M. Cançado, C.M.M. Leite, R.M. Lago, Combined processes of glycerol polymerization/carbonization/activation to produce efficient adsorbents for organic contaminants. J. Chem. Technol. Biotechnol. 87, 1654–1660 (2012)

    Article  CAS  Google Scholar 

  30. M. Gonçalves, C.S. Castro, I.K.V. Boas, F.C. Soler, E.d.C. Pinto, R.L. Lavall, W.A. Carvalho, Glycerin waste as sustainable precursor for activated carbon production: adsorption properties and application in supercapacitors. J. Environ. Chem. Eng. 7,  103059 (2019)

  31. N. Almahbashi, S. Kutty, M. Ayoub, A. Noor, I. Salihi, A. Al-Nini, A. Jagaba, B. Aldhawi, A. Ghaleb, Optimization of preparation conditions of sewage sludge based activated carbon. Ain Shams Engineering Journal 12, 1175–1182 (2021)

    Article  Google Scholar 

  32. N. Isoda, R. Rodrigues, A. Silva, M. Gonçalves, D. Mandelli, F.C.A. Figueiredo, W.A. Carvalho, Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design. Powder Technol. 256, 175–181 (2014)

    Article  CAS  Google Scholar 

  33. A.K. Tovar, L.A. Godinez, F. Espejel, R.M. Ramirez-Zamora, I. Robles, Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon. Waste Manag 85, 202–213 (2019)

    Article  CAS  PubMed  Google Scholar 

  34. M. Gonçalves, M. Mantovani, W.A. Carvalho, R. Rodrigues, D. Mandelli, J. Silvestre, Albero, Biodiesel wastes: An abundant and promising source for the preparation of acidic catalysts for utilization in etherification reaction. Chem. Eng. J. 256, 468–474 (2014)

    Article  Google Scholar 

  35. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  36. Q.-S. Liu, T. Zheng, P. Wang, L. Guo, Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 31, 233–238 (2010)

    Article  CAS  Google Scholar 

  37. J. Chen, L. Zhang, G. Yang, Q. Wang, R. Li, L.A. Lucia, Preparation and characterization of activated carbon from hydrochar by phosphoric acid activation and its adsorption performance in prehydrolysis liquor. BioResources, 12, 5928–5941 (2017)

  38. M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Appl. Surf. Sci. 252, 5967–5971 (2006)

    Article  Google Scholar 

  39. J.L. Figueiredo, M. Pereira, M. Freitas, J. Orfao, Modif. Surf. Chem. activated carbons carbon 37, 1379–1389 (1999)

    CAS  Google Scholar 

  40. M. Gonçalves, R. Rodrigues, T.S. Galhardo, W.A. Carvalho, Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel 181, 46–54 (2016)

    Article  Google Scholar 

  41. R. Delgado, J g. Rosas, N. Gómez, O. Martínez, M.E. Sanchez, J. Cara, Energy valorisation of crude glycerol and corn straw by means of slow co-pyrolysis: Production and characterisation of gas, char and bio-oil. Fuel 112, 31–37 (2013)

    Article  CAS  Google Scholar 

  42. P.H. Ho, V. Lofty, A. Basta, P. Trens, Designing microporous activated carbons from biomass for carbon dioxide adsorption at ambient temperature. A comparison between bagasse and rice by-products, Journal of Cleaner Production, 294 (2021)

  43. R.S. Ribeiro, A.M.T. Silva, M.T. Pinho, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Development of glycerol-based metal-free carbon materials for environmental catalytic applications. Catal. Today 240, 61–66 (2015)

    Article  CAS  Google Scholar 

  44. J.-H. Lee, Y.-J. Heo, S.-J. Park, Effect of silica removal and steam activation on extra-porous activated carbons from rice husks for methane storage. Int. J. Hydrog. Energy  43, 22377 (2018)

  45. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015) 

  46. M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, M. Sellés, Porosity in granular carbons activated with phosphoric acid. Carbon 33, 1105–1113 (1995)

    Article  CAS  Google Scholar 

  47. S. Yakout, G.S. El-Deen, Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arab. J. Chem. 9, S1155–S1162 (2016)

    Article  CAS  Google Scholar 

  48. F.M. Onaga Medina, M.B. Aguiar, M.E. Parolo, M.J. Avena, Insights of competitive adsorption on activated carbon of binary caffeine and diclofenac solutions. J. Environ. Manage. 278, 111523 (2021)

    Article  CAS  PubMed  Google Scholar 

  49. D.C. Montgomery, Design and Analysis of Experiments, 9 edn. (Wiley, New York, 2017)

  50. T.R. Brazil, M. Gonçalves, M.S.O. Junior, M.C. Rezende, A statistical approach to optimize the activated carbon production from Kraft lignin based on conventional and microwave processes. Microporous Mesoporous Mater. 308, 110485 (2020)

  51. A. Lazzarini, A. Piovano, R. Pellegrini, G. Agostini, S. Rudić, C. Lamberti, E. Groppo, Graphitization of activated carbons: a molecular-level investigation by INS, DRIFT, XRD and Raman techniques. Phys. Proc. 85, 20–26 (2016)

    Article  CAS  Google Scholar 

  52. Q. Yang, P. Wu, J. Liu, S. Rehman, Z. Ahmed, B. Ruan, N. Zhu, Batch interaction of emerging tetracycline contaminant with novel phosphoric acid activated corn straw porous carbon: adsorption rate and nature of mechanism. Environ. Res. 181, 108899 (2020)

    Article  CAS  PubMed  Google Scholar 

  53. V.A.-L.A.B. Leoneti, S.V.W.B. de Oliveira, Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew. Energy 45, 138–145 (2012)

    Article  CAS  Google Scholar 

  54. M. Molina-Sabio, F. Rodríguez-Reinoso, Role of chemical activation in the development of carbon porosity. Colloids Surf. A 241, 15–25 (2004)

    Article  CAS  Google Scholar 

  55. O. Oginni, K. Singh, G. Oporto, B. Dawson-Andoh, L. McDonald, E. Sabolsky, Effect of one-step and two-step H3PO4 activation on activated carbon characteristics, Bioresour. Technol. Rep. 8, 100307 (2019)

  56. S. Cheng, S. Zhao, H. Guo, B. **ng, Y. Liu, C. Zhang, M. Ma, High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. Bioresour. Technol. 343, 126081 (2022)

    Article  CAS  PubMed  Google Scholar 

  57. A. Yazidi, M. Atrous, F. Edi Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G. Luiz Dotto, A. Ben Lamine, Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis, Chem. Eng. J.  379, 122320 (2020)

  58. D. Balarak, F. Mostafapour, A. Joghataei, Biosorption of amoxicillin from contaminated water onto palm bark biomass. Int. J. Life Sci. Pharma Res. 7, 9–16 (2017)

    Google Scholar 

  59. M.A.E. de Franco, C.B. de Carvalho, M.M. Bonetto, R.D.P. Soares, L.A. Féris, Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J. Clean. Prod. 161, 947–956 (2017)

    Article  Google Scholar 

  60. E.P. Thurow, Estudo do processo de adsorção de amoxicilina utilizando carvão ativado como sólido sorvente.pdf (2015). https://hdl.handle.net/10183/131331

  61. N.C.d. Silva, Remoção de antibióticos da água por meio do processo de adsorção em carvão ativado (2012). https://repositorio.unesp.br/handle/11449/97882

  62. G. Niero, C.A. Rodrigues, G.I. Almerindo, A.X.R. Correa, P. Gaspareto, A.J. Feuzer-Matos, C.A. Somensi, C.M. Radetski, Using basic parameters to evaluate adsorption potential of alternative materials: example of amoxicillin adsorption by activated carbon produced from termite bio-waste. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 56, 32–43 (2021)

    Article  CAS  PubMed  Google Scholar 

  63. J. Berges, S. Moles, M.P. Ormad, R. Mosteo, J. Gomez, Antibiotics removal from aquatic environments: adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal powdered activated carbon. Environ. Sci. Pollut. Res. Int. 28, 8442–8452 (2021)

    Article  CAS  PubMed  Google Scholar 

  64. O. Yaqubi, M.H. Tai, D. Mitra, C. Gerente, K.G. Neoh, C.-H. Wang, Y. Andres, Adsorptive removal of tetracycline and amoxicillin from aqueous solution by leached carbon black waste and chitosan-carbon composite beads. J. Environ. Chem. Eng. 9 (2021)

  65. F.K. Mostafapour, S. Haseeb, D. Balarak, H. Moein, A.A. Sajadi, Z. Jalalzaei, Thermodynamic study of amoxicillin and naphthalene adsorption on activated carbon derived from salvadora persica. Int. J. Pharm. Investig. 11, 41–45 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the Brazilian Funding Institutions FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) (Process number 2018-21502-9 and 2018/09531-2), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (Process No. 305123/2018-1), and the Federal University of São Paulo (UNIFESP and NAPCEM).

Author information

Authors and Affiliations

Authors

Contributions

TAPM: data collection, analysis, interpretation of results, and Draft manuscript preparation. TRB: Interpretation of results and Draft manuscript preparation. MCR: Interpretation of results and Draft manuscript preparation. All authors reviewed the results and approved the final version of the manuscript. MG: study conception and design interpretation of results, Draft manuscript preparation, Project administration, Funding acquisition.

Corresponding author

Correspondence to Maraísa Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonça, T.A.P., Brazil, T.R., Rezende, M.C. et al. Synthesis of activated carbon from biodiesel waste as a sustainable environmental method using microwave heating. J Porous Mater 30, 739–750 (2023). https://doi.org/10.1007/s10934-022-01381-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01381-4

Keywords

Navigation