Log in

Synthesis, characterization and application development of ordered mesoporous silica in wastewater remediation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This study describes the total removal of multiple heavy metal ions from wastewater using organo-functionalized ordered mesoporous silica MCM-41. Hydrothermal synthesis of siliceous MCM-41 was done using sodium silicate as precursor through a new cost-effective and environmentally friendly silica precipitation method. Functionalization of siliceous MCM-41 by thiol-containing organosilane was done through a post-synthesis grafting route at room temperature. Physicochemical characterization reveals that the resultant materials have highly ordered hexagonal mesoporous structure and high BET surface area in the range of 1000‒1200 m2/g, before and after organo-functionalization. The organo-functionalized mesoporous materials have been applied for adsorption of a mixture of heavy metal ions from wastewater at room temperature, where the heavy metal ions covalently bind non-selectively with the pendant thiol moieties inside the mesopores. As envisaged from elemental analyses using atomic emission spectroscopy, high efficiency of heavy metal ion adsorption from wastewater was observed, which was significantly better than that of standard adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. HB Bradl Heavy Metals in the Environment, Origin, Interaction and Remediation (Elsevier Academic Press, Amsterdam, 2005)

    Google Scholar 

  2. A.T. Paulino, L.B. Santos, J. Nozaki, Removal of Pb2+, Cu2+, and Fe3+ from battery manufacture wastewater by chitosan produced from silkworm chrysalides as a low-cost adsorbent. React. Funct. Polym. 68, 634–642 (2008). https://doi.org/10.1016/j.reactfunctpolym.2007.10.028

    Article  CAS  Google Scholar 

  3. T. Inaba, E. Kobayashi, Y. Suwazono, M. Uetani, M. Oishi, H. Nakagawa, K. Nogawa, Estimation of cumulative cadmium intake causing Itai–itai disease. Toxicol. Lett. 159, 192–201 (2005). https://doi.org/10.1016/j.toxlet.2005.05.011

    Article  CAS  PubMed  Google Scholar 

  4. D.W. O’Connell, C. Birkinshaw, T.F. O’Dwyer, Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour. Technol. 99, 6709–6724 (2008). https://doi.org/10.1016/j.biortech.2008.01.036

    Article  CAS  PubMed  Google Scholar 

  5. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  6. E.S. Abdel-Halim, S.S. Al-Deyab, Removal of heavy metals from their aqueous solutions through adsorption onto natural polymers. Carbohydr. Polym. 84, 454–458 (2011). https://doi.org/10.1016/j.carbpol.2010.12.001

    Article  CAS  Google Scholar 

  7. E. Mahmoudi, S. Azizkhani, A.W. Mohammad, L.Y. Ng, A. Benamor, W.L. Ang, M. Ba-Abbad, Simultaneous removal of Congo red and cadmium (II) from aqueous solutions using graphene oxide–silica composite as a multifunctional adsorbent. J. Environ. Sci. 98, 151–160 (2020). https://doi.org/10.1016/j.jes.2020.05.013

    Article  Google Scholar 

  8. J. Wei, L. Duan, J. Wei, E. Hoffmann, Y. Song, X. Meng, Lead removal from water using organic acrylic amine fiber (AAF) and inorganic-organic P-AAF, fixed bed filtration and surface-induced precipitation. J. Environ. Sci. 101, 135–144 (2021). https://doi.org/10.1016/j.jes.2020.08.009

    Article  Google Scholar 

  9. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992). https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  10. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992). https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  11. D. Rautaray, P.K. Parida, M. Lolage, Precipitated silica. US Patent 10981795 B2 (2021). https://patents.google.com/patent/US10981795B2/en

  12. A. Stein, B.J. Melde, R.C. Schroden, Hybrid inorganic–organic mesoporous silicates—Nanoscopic reactors coming of age. Adv. Mater. 12, 1403–1419 (2000). https://doi.org/10.1002/1521-4095(200010)12:19%3C1403::AID-ADMA1403%3E3.0.CO;2-X

    Article  CAS  Google Scholar 

  13. A.P. Wight, M.E. Davis, Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 102, 3589–3614 (2002). https://doi.org/10.1021/cr010334m

    Article  CAS  PubMed  Google Scholar 

  14. K. Moller, T. Bein, Inclusion chemistry in periodic mesoporous hosts. Chem. Mater. 10, 2950–2963 (1998). https://doi.org/10.1021/cm980243e

    Article  CAS  Google Scholar 

  15. A. Ghosh, R. Kumar, Efficient heterogeneous catalytic systems for enantioselective hydrogenation of prochiral carbonyl compounds. J. Catal. 228, 386–396 (2004). https://doi.org/10.1016/j.jcat.2004.08.040

    Article  CAS  Google Scholar 

  16. A. Ghosh, C.R. Patra, P. Mukherjee, M. Sastry, R. Kumar, Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica. Microporous Mesoporous Mater. 58, 201–211 (2003). https://doi.org/10.1016/S1387-1811(02)00626-1

    Article  CAS  Google Scholar 

  17. B. Lee, Y. Kim, H. Lee, J. Yi, Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface the adsorbents. Microporous Mesoporous Mater. 50, 77–90 (2001). https://doi.org/10.1016/S1387-1811(01)00437-1

    Article  CAS  Google Scholar 

  18. E. Da’na, Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous Mesoporous Mater. 247, 145–157 (2017). https://doi.org/10.1016/j.micromeso.2017.03.050

    Article  CAS  Google Scholar 

  19. Y. Li, J. He, K. Zhang, T. Liu, Y. Hu, X. Chen, C. Wang, X. Huang, L. Kong, J. Liu, Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC Adv. 9, 397–407 (2019). https://doi.org/10.1039/C8RA08638A

    Article  CAS  Google Scholar 

  20. M.A.A. Zaini, Y. Amano, M. Machida, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber. J. Hazard. Mater. 180, 552–560 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.069

    Article  CAS  PubMed  Google Scholar 

  21. N. Wahab, M. Saeed, M. Ibrahim, A. Munir, M. Saleem, M. Zahra, A. Waseem, Synthesis, characterization and applications of silk/Bentonite clay composite for heavy metal removal from aqueous solution. Front. Chem. 7, 654 (2019). https://doi.org/10.3389/fchem.2019.00654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. S. Chella, P. Kollu, E.V.P.R. Komarala, S. Doshic, M. Saranya, S. Felix, R. Ramachandran, P. Saravanan, V.L. Koneru, V. Venugopal, S.K. Jeong, A.N. Grace, Solvothermal synthesis of MnFe2O4-graphenecomposite – Investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci. 327, 27–36 (2015). https://doi.org/10.1016/j.apsusc.2014.11.096

    Article  CAS  Google Scholar 

  23. J. He, Y. Li, C. Wang, K. Zhang, D. Lina, L. Kong, J. Liu, Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl. Surf. Sci. 426, 29–39 (2017). https://doi.org/10.1016/j.apsusc.2017.07.103

    Article  CAS  Google Scholar 

  24. L. Pan, Z. Wang, Q. Yang, R. Huang, Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8, 957 (2018). https://doi.org/10.3390/nano8110957

    Article  CAS  PubMed Central  Google Scholar 

  25. J. Xu, Z. Luan, H. He, W. Zhou, L. Kevan, A reliable synthesis of cubic mesoporous MCM-48 molecular sieve. Chem. Mater. 10, 3690–3698 (1998). https://doi.org/10.1021/cm980440d

    Article  CAS  Google Scholar 

  26. K. Mukhopadhyay, A. Ghosh, R. Kumar, Heteropolyacids aided rapid and convenient syntheses of highly ordered MCM-41 and MCM-48: exploring the accelerated process by 29Si MAS NMR and powder X-ray diffraction studies. Chem. Commun. (2002). https://doi.org/10.1039/b206482k

    Article  Google Scholar 

  27. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1967), pp. 121–194

    Google Scholar 

  28. C.-Y. Chen, H.-X. Li, M.E. Davis, Studies on mesoporous materials. I. Synthesis and characterization of MCM-41. Microporous Mater. 2, 17–26 (1993). https://doi.org/10.1016/0927-6513(93)80058-3

    Article  Google Scholar 

  29. X. Chen, L. Huang, Q. Li, Hydrothermal transformation and characterization of porous silica templated by surfactants. J. Phys. Chem. B 101, 8460–8467 (1997). https://doi.org/10.1021/jp9705333

    Article  CAS  Google Scholar 

  30. K. Bandyopadhyay, K.S. Mayya, K. Vijayamohanan, M. Sastry, Spontaneously organized molecular assembly of an aromatic organic disulfide on silver/platinum alloy surfaces: an angle dependent X-ray photoemission investigation. J. Electron. Spectrosc. Related Phenomena 87, 101–107 (1997). https://doi.org/10.1016/S0368-2048(97)00090-X

    Article  CAS  Google Scholar 

Download references

Funding

Funding provided by Head, Innovation Centre, Tata Chemicals Limited is gratefully acknowledged. The authors thank Dr. Debabrata Rautaray for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lolage, M., Chaskar, M. & Ghosh, A. Synthesis, characterization and application development of ordered mesoporous silica in wastewater remediation. J Porous Mater 28, 1867–1879 (2021). https://doi.org/10.1007/s10934-021-01126-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01126-9

Keywords

Navigation