Log in

Molecular Insights of an Avian Species with Low Oxygen Affinity, the Crystal Structure of Duck T-State Methemoglobin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Hemoglobin (Hb) is the key metalloprotein within red blood cells involved in oxygen transportation from lungs to body cells. The heme-iron atom inherent within Hb effectuates the mechanism of oxygen transportation and carbon dioxide removal. Structural investigations on avian Hb are limited when compared with the enormous work has been carried out on mammalian Hb. Here, the crystal structure of T-state methemoglobin (T-metHb) from domestic duck (Anas platyrhynchos), a low oxygen affinity avian species, determined to 2.1Å resolution is presented. Duck T-metHb crystallized in the orthorhombic space group C2221 with unit cell parameters a = 59.89, b = 109.42 and c = 92.07Å. The final refined model with R-factor: 19.5% and Rfree: 25.2% was obtained. The structural analysis reveals that duck T-metHb adopts a unique quaternary structure that is distinct from any of the avian liganded Hb structures. Moreover, it closely resembles the deoxy Hb of bar-headed goose, a high oxygen-affinity species. Besides the amino acid αPro119 located in the α1β1 interface, a unique quaternary structure with a constrained heme environment is attributed for the intrinsic low oxygen-affinity of duck Hb. This study reports the first protein crystal structure of low oxygen-affinity avian T-metHb from Anas platyrhynchos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118. https://doi.org/10.1016/S0022-2836(65)80285-6

    Article  CAS  PubMed  Google Scholar 

  2. Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin: haem–haem interaction and the problem of allostery. Nature 228:726–734

    Article  CAS  PubMed  Google Scholar 

  3. Perutz MF (1972) Nature of haem–haem interaction. Nature 237:495–499

    Article  CAS  PubMed  Google Scholar 

  4. Baldwin J, Chothia C (1979) Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J Mol Biol 129:175–220

    Article  CAS  PubMed  Google Scholar 

  5. Perutz MF (1989) Mechanisms of cooperativity and allosteric regulation in proteins. Q Rev Biophys 22:139–237

    Article  CAS  PubMed  Google Scholar 

  6. Perutz MF, Fermi G, Luisi B et al (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Acc Chem Res 20:309–321

    Article  CAS  Google Scholar 

  7. Lenfant C, Kooyman GL, Elsner R, Drabek CM (1969) Respiratory function of blood of the Adélie penguin Pygoscelis adeliae. Am J Physiology-Legacy Content 216:1598–1600

    Article  CAS  Google Scholar 

  8. Bartlett GR (1970) Patterns of phosphate compounds in red blood cells of man and animals. In: Red cell metabolism and function: Proceedings of the first international conference on red cell metabolism and function, held at the University of Michigan, Ann Arbor, October 1–3, 1969. Springer, pp 245–256

  9. Rollema HS, Bauer C (1979) The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J Biol Chem 254:12038–12043

    Article  CAS  PubMed  Google Scholar 

  10. Weber RE (1995) Hemoglobin adaptations to hypoxia and altitude-the phylogenetic perspective. Hypoxia Brain 31–44

  11. Knapp JE, Oliveira MA, **e Q et al (1999) The structural and functional analysis of the hemoglobin D component from chicken. J Biol Chem 274:6411–6420

    Article  CAS  PubMed  Google Scholar 

  12. Swan LW (1970) Goose of the Himalayas. Nat Hist 79:691

    Google Scholar 

  13. Liang Y-H, Liu X-Z, Liu S-H, Lu G-Y (2001) The structure of greylag goose oxy haemoglobin: the roles of four mutations compared with bar-headed goose haemoglobin. Acta Crystallogr D Biol Crystallogr 57:1850–1856

    Article  CAS  PubMed  Google Scholar 

  14. Liang Y, Hua Z, Liang X et al (2001) The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity. J Mol Biol 313:123–137

    Article  CAS  PubMed  Google Scholar 

  15. Liu X-Z, Li S-L, **g H et al (2001) Avian haemoglobins and structural basis of high affinity for oxygen: structure of bar-headed goose aquomet haemoglobin. Acta Crystallogr D Biol Crystallogr 57:775–783

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Hua Z, Tame JRH et al (1996) The crystal structure of a high oxygen affinity species of haemoglobin (bar-headed goose haemoglobin in the oxy form). J Mol Biol 255:484–493

    Article  CAS  PubMed  Google Scholar 

  17. Black CP, Tenney SM (1980) Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir Physiol 39:217–239

    Article  CAS  PubMed  Google Scholar 

  18. Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1:1–28

    CAS  PubMed  Google Scholar 

  19. Shaanan B (1983) Structure of human oxyhaemoglobin at 2· 1resolution. J Mol Biol 171:31–59

    Article  CAS  PubMed  Google Scholar 

  20. Holle JP, Meyer M, Scheid P (1977) Oxygen affinity of duck blood determined by in vivo and in vitro technique. Respir Physiol 29:355–361

    Article  CAS  PubMed  Google Scholar 

  21. Petschow D, Wurdinger I, Baumann R et al (1977) Causes of high blood O2 affinity of animals living at high altitude. J Appl Physiol 42:139–143

    Article  CAS  PubMed  Google Scholar 

  22. Neelagandan K, Moorthy PS, Balasubramanian M, Ponnuswamy MN (2007) Crystallization of sheep (Ovis aries) and goat (Capra hircus) haemoglobins under unbuffered low-salt conditions. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:887–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamariah N, Ponnuraj SM, Moovarkumudalvan B, Ponnuswamy MNG (2014) Structural studies on a low oxygen affinity hemoglobin from mammalian species: Sheep (Ovis aries). Biochem Biophys Res Commun 450:36–41

    Article  CAS  PubMed  Google Scholar 

  24. Moorthy PS, Neelagandan K, Balasubramanian M, Ponnuswamy MNG (2009) Purification, crystallization and preliminary X-Ray Diffraction studies on Goat (Capra hircus) Hemoglobin-A low Oxygen Affinity species. Protein Pept Lett 16:454–456

    Article  CAS  PubMed  Google Scholar 

  25. Sathya Moorthy P, Neelagandan K, Balasubramanian M, Ponnuswamy MN (2009) Purification, crystallization and preliminary X-ray diffraction studies on avian haemoglobin from pigeon (Columba livia). Acta Crystallogr Sect F Struct Biol Cryst Commun 65:120–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balasubramanian M, Sathya Moorthy P, Neelagandan K, Ponnuswamy MN (2009) Purification, crystallization and preliminary crystallographic study of haemoglobin from camel (Camelus dromedarius): a high oxygen-affinity lowland species. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:773–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balasubramanian M, Moorthy PS, Neelagandan K, Gounder Ponnuswamy MN (2009) Preliminary crystallographic study of Hemoglobin from Buffalo (Bubalus bubalis): a low Oxygen Affinity species. Protein Pept Lett 16:213–215

    Article  CAS  PubMed  Google Scholar 

  28. Balasubramanian M, Sathya Moorthy P, Neelagandan K et al (2014) Structure of liganded T-state haemoglobin from cat (Felis silvestris Catus), a low oxygen-affinity species, in two different crystal forms. Acta Crystallogr D Biol Crystallogr 70:1898–1906

    Article  CAS  PubMed  Google Scholar 

  29. Balasubramanian M, Moorthy PS, Neelagandan K, Ponnuswamy MN (2009) Purification, crystallization and preliminary crystallographic study of low oxygen-affinity haemoglobin from cat (Felis silvestris Catus) in two different crystal forms. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:313–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  32. Bartels KS, Klein C (2003) The automar Manual, v. 1.4. MAR Research GmbH, Norderstedt, Germany

    Google Scholar 

  33. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. CCP C (1994) Collaborative computational project number 4. Acta Crystallogr D Biol Crystallogr 50:760–763

  35. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  CAS  PubMed  Google Scholar 

  36. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  37. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  38. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  39. Dall’Acqua W, Simon AL, Mulkerrin MG, Carter P (1998) Contribution of domain interface residues to the stability of antibody CH3 domain homodimers. Biochemistry 37:9266–9273

    Article  PubMed  Google Scholar 

  40. Fermi G, Perutz MF, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J Mol Biol 175:159–174

    Article  CAS  PubMed  Google Scholar 

  41. Borgese TA, Nagel RL (1977) Differential effects of 2, 3-DPG, ATP and inositol pentaphosphate (IP5) on the oxygen equilibria of duck embryonic, fetal and adult hemoglobins. Comp Biochem Physiol Physiol 56:539–543

    Article  CAS  Google Scholar 

  42. Isaacks RE, Harkness DR (1980) Erythrocyte organic phosphates and hemoglobin function in birds, reptiles, and fishes. Am Zool 20:115–129

    Article  CAS  Google Scholar 

  43. Arnone A (1972) X-ray diffraction study of binding of 2, 3-diphosphoglycerate to human deoxyhaemoglobin. Nature 237:146–149

    Article  CAS  PubMed  Google Scholar 

  44. Natarajan C, Jendroszek A, Kumar A et al (2018) Molecular basis of hemoglobin adaptation in the high-flying bar-headed goose. PLoS Genet 14:e1007331

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jaimohan SM, Naresh MD, Mandal AB (2021) Parakeet hemoglobin-its Crystal structure and Oxygen Affinity in Relation to some avian hemoglobins. Protein Pept Lett 28:18–30

    Article  CAS  PubMed  Google Scholar 

  46. Ramesh P, Sundaresan SS, Shobana N et al (2021) Structural studies of hemoglobin from two flightless birds, ostrich and Turkey: insights into their differing oxygen-binding properties. Acta Crystallogr D Struct Biol 77:690–702

    Article  CAS  PubMed  Google Scholar 

  47. Jessen T-H, Weber RE, Fermi G et al (1991) Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering. Proceedings of the National Academy of Sciences 88:6519–6522

  48. Weber RE, Jessen T-H, Malte H, Tame J (1993) Mutant hemoglobins (alpha 119-Ala and beta 55-Ser): functions related to high-altitude respiration in geese. J Appl Physiol 75:2646–2655

    Article  CAS  PubMed  Google Scholar 

  49. Ganapathy J, Palayam M, Pennathur G et al (2018) Crystal Structure Analysis of Great Cormorant (Phalacrocorax carbo) Hemoglobin to understand its high Oxygen Affinity characteristics by Special Structural features. Protein Pept Lett 25:748–756

    Article  CAS  PubMed  Google Scholar 

  50. Liddington R, Derewenda Z, Dodson E et al (1992) High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T (α-oxy) haemoglobin and T (met) haemoglobin. J Mol Biol 228:551–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr M. D. Naresh and Mr S. M. Jaimohan of CLRI, Chennai for their support during data collection. K.N would like to thank UGC, New Delhi, P.S.M and M.B thanks CSIR, Government of India, for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

P.S.M , K.N. and M.B. contributed for Conceptualization, Methodology, Investigation and Writing original draft. R.R. and M.N.P. contributed for Writing & Editing original draft. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Sathya Moorthy Ponnuraj or Balasubramanian Moovarkumudalvan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnuraj, S.M., Kamariah, N., Moovarkumudalvan, B. et al. Molecular Insights of an Avian Species with Low Oxygen Affinity, the Crystal Structure of Duck T-State Methemoglobin. Protein J (2024). https://doi.org/10.1007/s10930-024-10206-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10206-z

Keywords

Navigation