Log in

Photocrosslinkable Antibacterial Bioadhesives Derived from Soybean Oil-Based Hydroxyurethane Methacrylates

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Compared to traditional invasive techniques for wound closure, photocrosslinkable surgical adhesives with antibacterial properties offer significant advantages. These include ease of application, a controllable and efficient curing reaction, reduced risk of pain and infection, and effective leakage prevention. This study introduces a novel soybean oil-based nonisocyanate polyurethane prepolymer for use in such adhesives. The prepolymer, a hydroxyurethane functionalized with methacrylate and quaternary ammonium groups (QAs), was characterized through spectroscopic methods. The resulting UV-curable bioadhesives, synthesized via thiol-ene-methacrylate click-photopolymerization, incorporated limonene as a reactive diluent, a tetra-functional thiol crosslinker, and a photoinitiator. Elemental analysis confirmed the uniform distribution of QAs and sulfur atoms, indicating a homogeneous network structure, corroborated by high gel content values in both organic (84–92%) and aqueous media (91–99%), and a consistent tan δ peak as per DMTA. The optimized adhesives exhibited strong adhesion (up to 377 kPa) to gelatin sheets—a tissue-analogous substrate—and displayed suitable surface free energy (45–52 mN/m) as determined by contact angle measurements, suggesting favorable thermodynamic adhesion to skin. Additionally, the adhesives showed satisfactory cytocompatibility with L-929 fibroblast cells and antimicrobial efficacy against two gram-positive and gram-negative bacterial strains, indicating promising biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Kharaziha M, Baidya A, Annabi N (2021) Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater 33:1–33. https://doi.org/10.1002/adma.202100176

    Article  CAS  Google Scholar 

  2. Annabi N, Tamayol A, Shin SR et al (2014) Surgical materials: current challenges and nano-enabled solutions. Nano Today 9:574–589. https://doi.org/10.1016/j.nantod.2014.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nam S, Mooney D (2021) Polymeric tissue adhesives. Chem Rev 121:11336–11384. https://doi.org/10.1021/acs.chemrev.0c00798

    Article  CAS  PubMed  Google Scholar 

  4. Ma Z, Bao G, Li J (2021) Multifaceted design and emerging applications of tissue adhesives. Adv Mater 33:1–29. https://doi.org/10.1002/adma.202007663

    Article  CAS  Google Scholar 

  5. O’Rorke RD, Pokholenko O, Gao F et al (2017) Addressing unmet clinical needs with UV bioadhesives. Biomacromolecules 18:674–682. https://doi.org/10.1021/acs.biomac.6b01743

    Article  CAS  PubMed  Google Scholar 

  6. Su Q, Wei D, Dai W et al (2019) Colloids and surfaces B: biointerfaces designing a castor oil-based polyurethane as bioadhesive. Colloids Surf B Biointerfaces 181:740–748. https://doi.org/10.1016/j.colsurfb.2019.06.032

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Li X, Wei W, Liu X (2021) A strong dual-component bioadhesive based on solventless thiol-isocyanate click chemistry. ACS Biomater Sci Eng 7:3389–3398. https://doi.org/10.1021/acsbiomaterials.1c00504

    Article  CAS  PubMed  Google Scholar 

  8. Santos M, Cernadas T, Martins P et al (2021) Polyester-based photocrosslinkable bioadhesives for wound closure and tissue regeneration support. React Funct Polym 158:104798. https://doi.org/10.1016/j.reactfunctpolym.2020.104798

    Article  CAS  Google Scholar 

  9. Walgenbach KJ, Bannasch H, Kalthoff S, Rubin JP (2012) Randomized, prospective study of TissuGlu® surgical adhesive in the management of wound drainage following abdominoplasty. Aesthetic Plast Surg 36:491–496. https://doi.org/10.1007/s00266-011-9844-3

    Article  PubMed  Google Scholar 

  10. Stam MAW, Mulder CLJ, Consten ECJ et al (2014) Sylys® surgical sealant: a safe adjunct to standard bowel anastomosis closure. Ann Surg Innov Res 8:6. https://doi.org/10.1186/s13022-014-0006-6

    Article  Google Scholar 

  11. Liang H, Li Y, Huang S et al (2020) Tailoring the performance of vegetable oil-based waterborne polyurethanes through incorporation of rigid cyclic rings into soft polymer networks. ACS Sustain Chem Eng 8:914–925. https://doi.org/10.1021/acssuschemeng.9b05477

    Article  CAS  Google Scholar 

  12. Gomez-Lopez A, Elizalde F, Calvo I, Sardon H (2021) Trends in non-isocyanate polyurethane (NIPU) development. Chem Commun 57:12254–12265. https://doi.org/10.1039/D1CC05009E

    Article  CAS  Google Scholar 

  13. Babaahmadi M, Yeganeh H (2023) Poly(vinyl alcohol)-gelatin crosslinked by silane-functionalized guanidyl-hydroxyurethane oligomer as contact-killing non-leaching antibacterial wound dressings. Biomed Mater 18:045017. https://doi.org/10.1088/1748-605X/acd5a0

    Article  Google Scholar 

  14. Wang T, Deng H, Li N et al (2022) Mechanically strong non-isocyanate polyurethane thermosets from cyclic carbonate linseed oil. Green Chem 24:8355–8366. https://doi.org/10.1039/D2GC02910C

    Article  CAS  Google Scholar 

  15. Gholami H, Yeganeh H (2020) Vegetable oil-based polyurethanes as antimicrobial wound dressings: in vitro and in vivo evaluation. Biomed Mater 15:045001. https://doi.org/10.1088/1748-605X/ab7387

    Article  CAS  PubMed  Google Scholar 

  16. Gholami H, Yeganeh H (2021) Soybean oil-derived non-isocyanate polyurethanes containing azetidinium groups as antibacterial wound dressing membranes. Eur Polym J 142:110142. https://doi.org/10.1016/j.eurpolymj.2020.110142

    Article  CAS  Google Scholar 

  17. Zareanshahraki F, Asemani HR, Skuza J, Mannari V (2020) Synthesis of non-isocyanate polyurethanes and their application in radiation-curable aerospace coatings. Prog Org Coat 138:105394

    Article  CAS  Google Scholar 

  18. Schilrreff P, Alexiev U (2022) Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. Int J Mol Sci 23:4928. https://doi.org/10.3390/ijms23094928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakipoglu M, Tezcaner A, Contag CH et al (2023) Bioadhesives with antimicrobial properties. Adv Mater 35:1–45. https://doi.org/10.1002/adma.202300840

    Article  CAS  Google Scholar 

  20. Dan W, Gao J, Qi X et al (2022) Antibacterial quaternary ammonium agents: chemical diversity and biological mechanism. Eur J Med Chem 243:114765. https://doi.org/10.1016/j.ejmech.2022.114765

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Duan F, Bi Y (2018) Fast and simple transesterification of epoxidized soybean oil to prepare epoxy methyl esters at room temperature. RSC Adv 8:13048–13053. https://doi.org/10.1039/C8RA00982A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jalilian M, Yeganeh H, Haghighi MN (2008) Synthesis and properties of polyurethane networks derived from new soybean oil-based polyol and a bulky blocked polyisocyanate. Polym Int 57:1385–1394. https://doi.org/10.1002/pi.2485

    Article  CAS  Google Scholar 

  23. Jalilian M, Yeganeh H, Haghighi MN (2010) Preparation and characterization of polyurethane electrical insulating coatings derived from novel soybean oil-based polyol. Polym Adv Technol 21:118–127. https://doi.org/10.1002/pat.1406

    Article  CAS  Google Scholar 

  24. Zhang Y, Li X, Zhu Q et al (2020) Photocurable hyperbranched polymer medical glue for water-resistant bonding. Biomacromolecules 21:5222–5232. https://doi.org/10.1021/acs.biomac.0c01302

    Article  CAS  PubMed  Google Scholar 

  25. Pramudya I, Kim C, Chung H (2018) Synthesis and adhesion control of glucose-based bioadhesive via strain-promoted azide–alkyne cycloaddition. Polym Chem 9:3638–3650. https://doi.org/10.1039/C8PY00339D

    Article  CAS  Google Scholar 

  26. Li S, Zhou J, Huang Y et al (2020) Injectable click chemistry-based bioadhesives for accelerated wound closure. Acta Biomater 110:95–104. https://doi.org/10.1016/j.actbio.2020.04.004

    Article  CAS  PubMed  Google Scholar 

  27. Cozens EJ, Roohpour N, Gautrot JE (2021) Comparative adhesion of chemically and physically crosslinked poly(acrylic acid)-based hydrogels to soft tissues. Eur Polym J 146:110250. https://doi.org/10.1016/j.eurpolymj.2020.110250

    Article  CAS  Google Scholar 

  28. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chemie Int Ed 49:1540–1573. https://doi.org/10.1002/anie.200903924

    Article  CAS  Google Scholar 

  29. Lowe AB (2014) Thiol-ene click reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 5:4820–4870. https://doi.org/10.1039/C4PY00339J

    Article  CAS  Google Scholar 

  30. Han Y, Chen W, Sun Z (2021) Antimicrobial activity and mechanism of limonene against Staphylococcusaureus. J Food Saf 41:1–14. https://doi.org/10.1111/jfs.12918

    Article  CAS  Google Scholar 

  31. Vieira AJ, Beserra FP, Souza MC et al (2018) Limonene: aroma of innovation in health and disease. Chem Biol Interact 283:97–106. https://doi.org/10.1016/j.cbi.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  32. Fischer KM, Morgan KY, Hearon K et al (2016) Poly(Limonene Thioether) Scaffold for tissue engineering. Adv Healthc Mater 5:813–821. https://doi.org/10.1002/adhm.201500892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li C, Johansson M, Sablong RJ, Koning CE (2017) High performance thiol-ene thermosets based on fully bio-based poly(limonene carbonate)s. Eur Polym J 96:337–349. https://doi.org/10.1016/j.eurpolymj.2017.09.034

    Article  CAS  Google Scholar 

  34. Zuo Y, Cao J, Feng S (2015) Sunlight-induced cross‐linked luminescent films based on polysiloxanes and D‐Limonene via thiol-ene click chemistry. Adv Funct Mater 25:2754–2762. https://doi.org/10.1002/adfm.201500187

    Article  CAS  Google Scholar 

  35. Firdaus M, Montero de Espinosa L, Meier MAR (2011) Terpene-based renewable monomers and polymers via thiol-ene additions. Macromolecules 44:7253–7262. https://doi.org/10.1021/ma201544e

    Article  CAS  Google Scholar 

  36. Gallardo H, Queralt I, Tapias J et al (2016) Bromine and bromide content in soils: analytical approach from total reflection X-ray fluorescence spectrometry. Chemosphere 156:294–301. https://doi.org/10.1016/j.chemosphere.2016.04.136

    Article  CAS  PubMed  Google Scholar 

  37. Wei J, Yoshinari M, Takemoto S et al (2007) Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J Biomed Mater Res Part B Appl Biomater 81B:66–75. https://doi.org/10.1002/jbm.b.30638

    Article  CAS  Google Scholar 

  38. Groth T, Seifert B, Malsch G et al (2002) Interaction of human skin fibroblasts with moderate wettable polyacrylonitrile–copolymer membranes. J Biomed Mater Res 61:290–300. https://doi.org/10.1002/jbm.10191

    Article  CAS  PubMed  Google Scholar 

  39. Menzies KL, Jones L (2010) The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci 87:387–399. https://doi.org/10.1097/OPX.0b013e3181da863e

    Article  PubMed  Google Scholar 

  40. Santos JMC, Marques DS, Alves P et al (2015) Synthesis, functionalization and characterization of UV-curable lactic acid based oligomers to be used as surgical adhesives. React Funct Polym 94:43–54. https://doi.org/10.1016/j.reactfunctpolym.2015.07.003

    Article  CAS  Google Scholar 

  41. Rabiee T, Yeganeh H, Gharibi R (2019) Antimicrobial wound dressings with high mechanical conformability prepared through thiol-yne click photopolymerization reaction. Biomed Mater 14:045007. https://doi.org/10.1088/1748-605X/ab16b8

    Article  CAS  PubMed  Google Scholar 

  42. Treloar LRG (2009) The physics of rubber elasticity. Oxford University Press, London, UK

    Google Scholar 

  43. Yeganeh H, Hojati-Talemi P (2007) Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol). Polym Degrad Stab 92:480–489. https://doi.org/10.1016/j.polymdegradstab.2006.10.011

    Article  CAS  Google Scholar 

  44. Ferreira P, Pereira R, Coelho JFJ et al (2007) Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int J Biol Macromol 40:144–152. https://doi.org/10.1016/j.ijbiomac.2006.06.023

    Article  CAS  PubMed  Google Scholar 

  45. Li C, Wang T, Hu L et al (2014) Photocrosslinkable bioadhesive based on dextran and PEG derivatives. Mater Sci Eng C 35:300–306. https://doi.org/10.1016/j.msec.2013.10.032

    Article  CAS  Google Scholar 

  46. Chen X, Yuk H, Wu J et al (2020) Instant tough bioadhesive with triggerable benign detachment. Proc Natl Acad Sci 117:15497–15503. https://doi.org/10.1073/pnas.2006389117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song Z, Wang H, Wu Y et al (2018) Fabrication of bis-quaternary ammonium salt as an efficient bactericidal weapon against Escherichiacoli and Staphylococcusaureus. ACS Omega 3:14517–14525. https://doi.org/10.1021/acsomega.8b01265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Z, Cheng J, Yang X et al (2020) Construction of antimicrobial and biocompatible cotton textile based on quaternary ammonium salt from rosin acid. Int J Biol Macromol 150:1–8. https://doi.org/10.1016/j.ijbiomac.2020.01.259

    Article  CAS  PubMed  Google Scholar 

  49. Tischer M, Pradel G, Ohlsen K, Holzgrabe U (2012) Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions? ChemMedChem 7:22–31. https://doi.org/10.1002/cmdc.201100404

    Article  CAS  PubMed  Google Scholar 

  50. Rao S, Preman BTN NK, et al (2022) Synthesis, characterization, and evaluation of quaternary ammonium-based polymerizable antimicrobial monomers for prosthodontic applications. Heliyon 8:e10374. https://doi.org/10.1016/j.heliyon.2022.e10374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jennings MC, Minbiole KPC, Wuest WM (2015) Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect Dis 1:288–303. https://doi.org/10.1021/acsinfecdis.5b00047

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.R contributed to the acquisition, analysis, and interpretation of data; drafted the work; approved the version to be published; and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any partof the work are appropriately investigated and resolved. H.Y. and S.N.K. contributed to the conception and design of the work; and interpretation of data; drafted the work, revised it critically for important intellectual content; approved the version to be submitted; and agreed to be accountable for all aspects of the work to ensure that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. I.M.B. contributed to the interpretation of data; approved the version to be published; and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding authors

Correspondence to Hamid Yeganeh or Saied Nouri Khorasani.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiee, T., Yeganeh, H., Khorasani, S.N. et al. Photocrosslinkable Antibacterial Bioadhesives Derived from Soybean Oil-Based Hydroxyurethane Methacrylates. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03333-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03333-2

Keywords

Navigation