Log in

Anisotropic Ca-alginate Hydrogels with Superior Mechanical Properties and Excellent Stability for Underwater Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Many natural living tissues, such as ligaments, muscles, tendons, and corneas, have anisotropic structural features that afford superior mechanical performance and functionalities. The development of hydrogels with structures and mechanical properties similar to those of natural living tissues for practical applications is urgently needed. In this study, a series of anisotropic Ca-alginate hydrogels are systematically fabricated via a facile prestretching and drying method. The resulting hydrogels exhibit highly ordered structures, which endow them with extraordinary mechanical properties and high mechanical anisotropy. The gels with a water content of ~ 54–60 wt%, similar to that of natural tissues such as cartilage, skin, and ligament, have the highest Young’s modulus, tensile strength, work of extension, and fracture energy of 258.40 ± 21.19 MPa, 28.54 ± 1.18 MPa, 11.79 ± 1.65 MJ/m3, and 4323 ± 224 J/m2, respectively. The highest degrees of anisotropy, or the ratio of the mean property between the parallel and perpendicular directions to the clam** direction, of those properties of the hydrogels are 11.08, 4.49, 1.47, and 4.01, respectively. Moreover, they are highly stable in distilled, domestic, and river water. With these remarkable characteristics, the developed anisotropic Ca-alginate hydrogels are expected to have numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mredha MdTI, Tran VT, Joeng S-G, Seon J-K, Jeon I (2018) A diffusion-driven fabrication technique for anisotropic tubular hydrogels. Soft Matter 14:7706–7713. https://doi.org/10.1039/c8sm01235k

    Article  CAS  PubMed  Google Scholar 

  2. Means AK, Grunlan MA (2019) Modern strategies to achieve tissue-mimetic, mechanically robust hydrogels. ACS Macro Lett 8:705–713. https://doi.org/10.1021/acsmacrolett.9b00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tran VT, Mredha MdTI, Jeon I (2020) High-water-content hydrogels exhibiting superior stiffness, strength, and toughness. Extreme Mech Lett 37:100691. https://doi.org/10.1016/j.eml.2020.100691

    Article  Google Scholar 

  4. Ghaderinejad P, Najmoddin N, Bagher Z, Saeed M, Karimi S, Simorgh S, Pezeshki-Modaress M (2021) An injectable anisotropic alginate hydrogel containing oriented fibers for nerve tissue engineering. Chem Eng J 420:130465. https://doi.org/10.1016/j.cej.2021.130465

    Article  CAS  Google Scholar 

  5. Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbar E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A (2020) Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 14:8–29. https://doi.org/10.1186/s13036-020-0227-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Le X, Lu W, Zhang J, Chen T (2019) Recent progress in biomimetic anisotropic hydrogel actuators. Adv Sci 6:1801584. https://doi.org/10.1002/advs.201801584

    Article  CAS  Google Scholar 

  7. Tran VT, Mredha MdTI, Pathak SK, Yoon H, Cui J, Jeon I (2019) Conductive tough hydrogels with a staggered ion-coordinating structure for high self-recovery rate. ACS Appl Mater Interfaces 11:24598–24608. https://doi.org/10.1021/acsami.9b06478

    Article  CAS  PubMed  Google Scholar 

  8. Tran VT, Mredha MdTI, Na JY, Seon J-K, Cui J, Jeon I (2020) Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability. Chem Eng J 394:124941. https://doi.org/10.1016/j.cej.2020.124941

    Article  CAS  Google Scholar 

  9. Tran VT, Xu X, Mredha MdTI, Cui J, Vlassak JJ, Jeon I (2018) Hydrogel bowls for cleaning oil spills on water. Water Res 145:640–649. https://doi.org/10.1016/j.watres.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  10. Tran VT, Nguyen TC, Nguyen TT, Nguyen HN (2023) Environmentally friendly plastic boats – A facile strategy for cleaning oil spills on water with excellent efficiency. Environ Sci Pollut Res 30:68848–68862. https://doi.org/10.1007/s11356-023-26978-3

    Article  CAS  Google Scholar 

  11. Wilcox C, Sebille EV, Hardesty BD (2015) Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc Natl Acad Sci USA 112:11899–11904. https://doi.org/10.1073/pnas.1502108112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Q, Zhang X, Chen K, Wu X, Zong T, Feng C, Zhang D (2022) Anisotropic hydrogels with enhanced mechanical and tribological performance by magnetically oriented nanohybrids. Chem Eng J 430:133036. https://doi.org/10.1016/j.cej.2021.133036

    Article  CAS  Google Scholar 

  13. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158. https://doi.org/10.1002/adma.200304907

    Article  CAS  Google Scholar 

  14. Jeon I, Cui J, Illeperuma WRK, Aizenberg J, Vlassak JJ (2016) Extremely stretchable and fast self-healing hydrogels. Adv Mater 28:4678–4683. https://doi.org/10.1002/adma.201600480

    Article  CAS  PubMed  Google Scholar 

  15. Mredha MdTI, Pathak SK, Tran VT, Cui J, Jeon I (2019) Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic–hydrophilic copolymers. Chem Eng J 362:325–338. https://doi.org/10.1016/j.cej.2018.12.023

    Article  CAS  Google Scholar 

  16. Le HH, Tran VT, Mredha MdTI, Na JY, Seon J-K, Jeon I (2020) Thin-film hydrogels with superior stiffness, strength, and stretchability. Extreme Mech Lett 37:100720. https://doi.org/10.1016/j.eml.2020.100720

    Article  Google Scholar 

  17. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124. https://doi.org/10.1002/1521-4095(20020816)14:16%1120::AID-ADMA1120%3.0.CO;2-9

    Article  CAS  Google Scholar 

  18. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MdA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937. https://doi.org/10.1038/nmat3713

    Article  CAS  PubMed  Google Scholar 

  19. Mredha MdTI, Jeon I (2022) Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications. Prog Mater Sci 124:100870. https://doi.org/10.1016/j.pmatsci.2021.100870

    Article  CAS  Google Scholar 

  20. Mredha MdTI, Le HH, Tran VT, Trtik P, Cui J, Jeon I (2019) Anisotropic tough multilayer hydrogels with programmable orientation. Mater Horiz 6:1504–1511. https://doi.org/10.1039/C9MH00320G

    Article  CAS  Google Scholar 

  21. Tran VT, Mredha MdTI, Lee Y, Todo M, So H, Jeong E, Park W, Jeon I (2022) Electrically, thermally, and mechanically anisotropic gels with a wide operational temperature range. Adv Funct Mater 32:2110177. https://doi.org/10.1002/adfm.202110177

    Article  CAS  Google Scholar 

  22. Liu M, Ishida Y, Ebina Y, Sasaki T, Hikima T, Takata M, Aida T (2015) An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517:68–72. https://doi.org/10.1038/nature14060

    Article  CAS  PubMed  Google Scholar 

  23. Mredha MdTI, Guo YZ, Nonoyama T, Nakajima T, Kurokawa T, Gong JP (2018) A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv Mater 30:1704937. https://doi.org/10.1002/adma.201704937

    Article  CAS  Google Scholar 

  24. Choi S, Choi Y, Kim J (2019) Anisotropic hybrid hydrogels with superior mechanical properties reminiscent of tendons or ligaments. Adv Funct Mater 29:1904342. https://doi.org/10.1002/adfm.201904342

    Article  CAS  Google Scholar 

  25. Sun Q, Ma S, Lin P, Wang X, Zheng Z, Zhou F (2020) Anisotropic hydrogels with high mechanical strength by stretching-induced oriented crystallization and drying. ACS Appl Polym Mater 2:2142–2150. https://doi.org/10.1021/acsapm.0c00096

    Article  CAS  Google Scholar 

  26. Cui W, Pi M, Zhu R, **ong Z, Ran R (2021) Strong anisotropic hydrogels with ion transport capability via reswelling contrast of two oriented polymer networks. J Mater Chem A 9:20362–20370. https://doi.org/10.1039/D1TA04346C

    Article  CAS  Google Scholar 

  27. Lee KY, Mooney DJ (2012) Alginate: Properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soares JD, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Ecl Quím 29:57–63. https://doi.org/10.1590/S0100-46702004000200009

    Article  CAS  Google Scholar 

  29. Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. https://doi.org/10.1038/nature11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tummino ML, Magnacca G, Cimino D, Laurenti E, Nisticò R (2020) The innovation comes from the sea: Chitosan and alginate hybrid gels and films as sustainable materials for wastewater remediation. Int J Mol Sci 21:550. https://doi.org/10.3390/ijms21020550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang H, Cheng J, Ao Q (2021) Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs 19:264. https://doi.org/10.3390/md19050264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sano K, Ishida Y, Aida T (2018) Synthesis of anisotropic hydrogels and their applications. Angew Chem Int Ed 57:2532–2543. https://doi.org/10.1002/anie.201708196

    Article  CAS  Google Scholar 

  33. Park N, Kim J (2022) Anisotropic hydrogels with a multiscale hierarchical structure exhibiting high strength and toughness for mimicking tendons. ACS Appl Mater Interfaces 14:4479–4489. https://doi.org/10.1021/acsami.1c18989

    Article  CAS  PubMed  Google Scholar 

  34. Fernandes RdS, Moura MRd, Glenn GM, Aouada FA (2018) Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. J Mol Liq 265:327–336. https://doi.org/10.1016/j.molliq.2018.06.005

    Article  CAS  Google Scholar 

  35. Jiang Y, Yu G, Zhou Y, Liu Y, Feng Y, Li J (2020) Effects of sodium alginate on microstructural and properties of bacterial cellulose nanocrystal stabilized emulsions. Colloids Surf A 607:125474. https://doi.org/10.1016/j.colsurfa.2020.125474

    Article  CAS  Google Scholar 

  36. Voo W-P, Lee B-B, Idris A, Islam A, Tey B-T, Chan E-S (2015) Production of ultra-high concentration calcium alginate beads with prolonged dissolution profile. RSC Adv 5:36687–36695. https://doi.org/10.1039/C5RA03862F

    Article  CAS  Google Scholar 

  37. Derkach SR, Voron’ko NG, Sokolan NI, Kolotova DS, Kuchina YA (2019) Interactions between gelatin and sodium alginate: UV and FTIR studies. J Dispers Sci Technol 41:1–9. https://doi.org/10.1080/01932691.2019.1611437

    Article  CAS  Google Scholar 

  38. Mutlu B, Farhan M, Kucuk I (2019) T-shaped microfluidic junction processing of porous alginate-based films and their characteristics. Polymers 11:1386. https://doi.org/10.3390/polym11091386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jana S, Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK (2015) Characterization of physicochemical and thermal properties of chitosan and sodium alginate after biofield treatment. Pharm Anal Acta 6:430. https://doi.org/10.4172/2153-2435.1000430

    Article  CAS  Google Scholar 

  40. Bhagyaraj S, Krupa I (2020) Alginate-mediated synthesis of hetero-shaped silver nanoparticles and their hydrogen peroxide sensing ability. Molecules 25:435. https://doi.org/10.3390/molecules25030435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Suo Z, Vlassak JJ (2014) Stiff, strong, and tough hydrogels with good chemical stability. J Mater Chem B 2:6708–6713. https://doi.org/10.1039/C4TB01194E

    Article  CAS  PubMed  Google Scholar 

  42. Tran VT, Pham NT-H, Lu H-K, Nguyen NT-N, Do HH-N, Doan D-Q, Uyen TMT, Huong HV (2021) A study of poly(butylene terephthalate) and thermoplastic polyurethane. Polym Sci Ser A 63:S58–S63. https://doi.org/10.1134/S0965545X22020110

    Article  Google Scholar 

  43. Nguyen TT, Tran VT, Pham THN, Nguyen V-T, Nguyen CT, Nguyen THM, Nguyen VAD, Nguyen TD, Nguyen VTT (2023) Influences of material selection, infill ratio, and layer height in the 3D printing cavity process on the surface roughness of printed patterns and casted products in investment casting. Micromachines 14:395. https://doi.org/10.3390/mi14020395

    Article  PubMed  PubMed Central  Google Scholar 

  44. Augustyn Ł, Babula A, Joniec J, Stanek-Tarkowska J, Hajduk E, Kaniuczak J (2016) Microbiological indicators of the quality of river water, used for drinking water supply. Pol J Environ Stud 25:511–519. https://doi.org/10.15244/pjoes/60899

    Article  CAS  Google Scholar 

  45. Tang J-C, Taniguchi H, Chu H, Zhou Q, Nagata S (2009) Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Lett Appl Microbiol 48:38–43. https://doi.org/10.1111/j.1472-765X.2008.02481.x

    Article  CAS  PubMed  Google Scholar 

  46. Lee Y-H, Chang J-J, Yang M-C, Chien C-T, Lai W-F (2012) Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydr Polym 88:809–819. https://doi.org/10.1016/j.carbpol.2011.12.045

    Article  CAS  Google Scholar 

  47. Samorezov JE, Morlock CM, Alsberg E (2015) Dual ionic and photo-crosslinked alginate hydrogels for micropatterned spatial control of material properties and cell behavior. Bioconjug Chem 26:1339–1347. https://doi.org/10.1021/acs.bioconjchem.5b00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bajpai SK, Sharma S (2004) Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React Funct Polym 59:129–140. https://doi.org/10.1016/j.reactfunctpolym.2004.01.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I acknowledge Ho Chi Minh City University of Technology and Education, Ho Chi Minh City 71307, Vietnam. They gave me permission to access the laboratory and research machines. Without their appreciated support, it would not be possible to conduct this research.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

VTT: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.

Corresponding author

Correspondence to Van Tron Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, V.T. Anisotropic Ca-alginate Hydrogels with Superior Mechanical Properties and Excellent Stability for Underwater Applications. J Polym Environ 32, 246–259 (2024). https://doi.org/10.1007/s10924-023-02974-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02974-z

Keywords

Navigation