Log in

Free Radical Polymerization of Dimethyl Amino Ethyl Methacrylate Initiated by Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Macroazo Initiator: Thermal and Physicochemical Characterization

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A novel macro intermediate based on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) was synthesized for use in the copolymerization with dimethyl amino ethyl methacrylate (DMAEMA). Methyl amino ethanol was reacted with PHBHHx to prepare a dihydroxy terminated polyester. The hydroxyl ends of the obtained PHBHHx derivatives were capped with 4,4’-azobis cyanopentanoic acid to obtain the PHBHHx macroazo initiator (PHBHHx-AI) for free radical copolymerization of DMAEMA at 70oC. A steady increase in DMAEMA units in the synthesized block copolymer as a function of time was observed. The overall rate constants for the free radical polymerization of DMAEMA initiated by PHBHHx-AI was k = 2.33 × 10− 4 Lmol-1s-1. Block copolymers were characterized using the 1 H NMR, FTIR, DSC and TGA techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bates CM, Bates FS (2017) 50th anniversary perspective: Block Polymers—Pure potential. Macromolecules 50(1):3–22. https://doi.org/10.1021/acs.macromol.6b02355

    Article  CAS  Google Scholar 

  2. Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, Rauf H, Ordonez E, Puchelle V, Alhan HB, Zhao C, Harth E (2022) Linear Block Copolymer Synthesis. Chem Rev 122(18):14471–14553. https://doi.org/10.1021/acs.chemrev.2c00189

    Article  CAS  PubMed  Google Scholar 

  3. Gao H, Matyjaszewski K (2008) Synthesis of low-polydispersity miktoarm star copolymers via a simple “arm-first” method: macromonomers as arm precursors. Macromolecules 41(12):4250–4257. https://doi.org/10.1021/ma800618d

    Article  CAS  Google Scholar 

  4. Degirmenci M, Hizal G, Yagci Y (2002) Synthesis and characterization of macrophotoinitiators of poly(ɛ-caprolactone) and their use in block copolymerization. Macromolecules 35(22):8265–8270. https://doi.org/10.1021/ma020668t

    Article  CAS  Google Scholar 

  5. Edmondson S, Armes SP (2009) Synthesis of surface-initiated polymer brushes using macro-initiators. Polym Intern 58(3):307–316. https://doi.org/10.1002/pi.2529

    Article  CAS  Google Scholar 

  6. Hazer B (1992) New macromonomeric initiators (macroinimers), 2 gelation in bulk polymerization of styrene with macroinimers. Makromol Chem 193(5):1081–1086. https://doi.org/10.1002/macp.1992.02193050

    Article  CAS  Google Scholar 

  7. Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures – synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973. https://doi.org/10.1021/cr900068q

    Article  CAS  PubMed  Google Scholar 

  8. Hazer B (1995) Grafting on polybutadiene with macro or macromonomer initiators containing poly(ethylene glycol) units. Macromol Chem Phys 196(6):1945–1952. https://doi.org/10.1002/macp.1995.021960614

    Article  CAS  Google Scholar 

  9. Wang YZ, Liu L, Dong SB, Zhou XL, Wang CL, Shi Z (2021) The “Living” feature of the ATRP macroinitiators in different Catalytic Systems. Electron Mater Lett 17(2):136–141. https://doi.org/10.1007/s13391-021-00268-x

    Article  CAS  Google Scholar 

  10. Ueda A, Nagai S (1986) Block copolymers derived from azobiscyanopentanoic acid. VI. Synthesis of a polyethyleneglycol – polystyrene block copolymer. J Polym Sci Part A Polym Chem 24(3):405–418. https://doi.org/10.1002/pola.1986.080240302

    Article  CAS  Google Scholar 

  11. Yıldız U, Hazer B, Tauer K (2012) Tailoring polymer architectures with macromonomer azoinitiators. Polym Chem 5:1107–1118. https://doi.org/10.1039/C2PY00513A

    Article  Google Scholar 

  12. Çakmak I, Hazer B, Yağcı Y (1991) Polymerization of acrylamide by the redox system cerium(IV) with poly(ethylene glycol) with azo groups. Eur Polym J 27(1):101–103. https://doi.org/10.1016/0014-3057(91)90134-A

    Article  Google Scholar 

  13. Yıldız U, Hazer B, Capek I (1995) Dispersion polymerization of styrene and methyl methacrylate initiated by poly(oxyethylene) macromonomeric azoinitiators. Angew Macromol Chem 231(1):135–144. https://doi.org/10.1002/apmc.1995.052310112

    Article  Google Scholar 

  14. Yıldız U, Hazer B (2000) Dispersion redox copolymerization of methyl methacrylate with macromonomeric azoinitiator as a macrocrosslinker. Polymer 41(2):539–544. https://doi.org/10.1016/S0032-3861(99)00217-7

    Article  Google Scholar 

  15. Erdem A, Mammadli N, Yildiz U (2021) Preparation of hydrophobic macroinimer – based novel hybrid sorbents for efficient removal of organic liquids from wastewater. Environ Sci Pollut Res 28:22064–22076. https://doi.org/10.1007/s11356-020-11841-6

    Article  CAS  Google Scholar 

  16. Hazer B (1987) Polymerization of vinyl monomers by a new oligoperoxide: Oligo(adipoyl-5-peroxy-2,5-dimethyl n-hexyl peroxide). J Polym Sci: Polym Chem Edition 25(12):3349–3354. https://doi.org/10.1002/pola.1987.080251214

    Article  CAS  Google Scholar 

  17. Hazer B, Savaşkan S (1998) Cross-linked multicomponent copolymers with macromonomer peroxyinitiators (MMPI). Eur Polym J 34(5–6):863–870. https://doi.org/10.1016/S0014-3057(97)00193-6

    Article  CAS  Google Scholar 

  18. Hazer B, Baysal BM (1986) Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer 27(6):961–986. https://doi.org/10.1016/0032-3861(86)90312-5

    Article  CAS  Google Scholar 

  19. Hazer B, Ayas A, Beşirli N, Saltek N, Baysal BM (1989) Preparation of ABCBA-type block copolymers by use of macro-initiators containing peroxy and azo groups. Makromol Chem 190(8):1987–1996. https://doi.org/10.1002/macp.1989.021900822

    Article  CAS  Google Scholar 

  20. Oppenheimer C, Heitz W (1981) The synthesis of blockcopolymers by radical polymerization. Die Angew Makromole Chemie 98(1):167–184. https://doi.org/10.1002/APMC.1981.050980108

    Article  CAS  Google Scholar 

  21. Frey H, Ishizone T (2017) Living Anionic polymerization celebrates 60 years: unique features and polymer architectures. Macromol Chem Phys 218:1700217. https://doi.org/10.1002/macp.201700217

    Article  CAS  Google Scholar 

  22. Boopathi SK, Hadjichristidis N, Gnanou Y, Feng X (2019) Direct access to poly(glycidyl azide) and its copolymers through anionic (co-polymerization of glycidyl azide. Nat Commun 10:293–301. https://doi.org/10.1038/s41467-018-08251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirao A, Goseki R, Ishizone T (2014) Advances in living anionic polymerization: from functional monomers, polymerization systems, to macromolecular architectures. Macromolecules 47(6):1883–1905. https://doi.org/10.1021/ma401175m

    Article  CAS  Google Scholar 

  24. Adamus G, Domiński A, Kowalczuk M, Kurcok P, Radecka I (2021) From Anionic Ring-Opening polymerization of β-Butyrolactone to biodegradable poly(hydroxyalkanoate)s: our contributions in this field. Polymers 13(24):4365. https://doi.org/10.3390/polym13244365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maric M (2021) History of nitroxide mediated polymerization in Canada. Can J Chem Eng 99:832–852. https://doi.org/10.1002/cjce.23989

    Article  CAS  Google Scholar 

  26. Matyjaszewski K, Tsarevsky NV (2017) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1(4):276–288. https://doi.org/10.1038/nchem.257

    Article  CAS  Google Scholar 

  27. Allı A, Allı S, Becer CR, Hazer B (2016) Nitroxide-mediated copolymerization of styrene and pentafluorostyrene initiated by polymeric linoleic acid. Eur J Lipid Sci Technol 118(2):279–287. https://doi.org/10.1002/ejlt.201500129

    Article  CAS  Google Scholar 

  28. Kapil K, Szczepaniak G, Martinez MR, Murata H, Jazani AM, Jeong J, Das SR, Matyjaszewski K (2023) Visible-light-mediated controlled radical branching polymerization in Water. Angew Chem Int Ed 62:e20221765. https://doi.org/10.1002/anie.202217658

    Article  CAS  Google Scholar 

  29. Dworakowska S, Lorandi F, Gorczynski A, Matyjaszewski K (2022) Toward green atom transfer Radical polymerization: current Status and Future Challenges. Adv Sci 9:2106076. https://doi.org/10.1002/advs.202106076

    Article  CAS  Google Scholar 

  30. Corbin DA, Miyake GM (2022) Photoinduced Organocatalyzed atom transfer Radical polymerization (O-ATRP): Precision Polymer Synthesis using Organic Photoredox Catalysis. Chem Rev 122:1830–1874. https://doi.org/10.1021/acs.chemrev.1c00603

    Article  CAS  PubMed  Google Scholar 

  31. Öztürk T, Yavuz M, Göktaş M, Hazer B (2016) One-step synthesis of triarm block copolymers by simultaneous atom transfer radical and ring-opening polymerization. Polym Bull 73:1497–1513. https://doi.org/10.1021/ja00125a035

    Article  Google Scholar 

  32. Becer CR, Growth AM, Hoogenboom R, Paulus RM, Schubert US (2008) Protocol for automated kinetic investigation/optimization of the RAFT polymerization of various monomers. QSAR & Comb Sci 27(8):977–983. https://doi.org/10.1002/qsar.200720159

    Article  CAS  Google Scholar 

  33. Aksakal S, Beyer VP, Aksakal R, Becer CR (2019) Copper mediated RDRP of thioacrylates and their combination with acrylates and acrylamides. Polym Chem 10(48):6622–6629. https://doi.org/10.1039/C9PY01518C

    Article  CAS  Google Scholar 

  34. Şanal T, Oruç O, Öztürk T, Hazer B (2015) Synthesis of pH- and thermo-responsive poly(ε-caprolactone-b-4-vinyl benzyl-g-dimethyl amino ethyl methacrylate) brush type graft copolymers via RAFT polymerization. J Polym Res 22:article3. https://doi.org/10.1007/s10965-014-0640-z

    Article  CAS  Google Scholar 

  35. Whitfield R, Anastasaki A, Nikolaou V, Jones GR, Engelis NG, Discekici EH, Fleischmann C, Willenbacher J, Hawker CJ, Haddleton DM (2017) Universal conditions for the controlled polymerization of acrylates, methacrylates, and styrene via Cu(0)-RDRP. J Am Chem Soc 139(2):1003–1010. https://doi.org/10.1021/jacs.6b11783

    Article  CAS  PubMed  Google Scholar 

  36. Hazer B, Subramaniyan S, Zhang B (2021) RAFT polymerization of the novel methacrylated methyl salicylate. Block copolymerization with poly (3-hydroxy butyrate). ChemistrySelect 6:12255–12265. https://doi.org/10.1002/slct.202102977

    Article  CAS  Google Scholar 

  37. Hazer B, Arslan H, Senemoğlu Y, Şen S (2019) Synthesis of block/graft copolymers based on vinyl benzyl chloride via reversible addition fragmentation chain transfer (RAFT) polymerization using the carboxylic acid functionalized trithiocarbonate. J Polym Res 26:article101. https://doi.org/10.1007/s10965-019-1763-z

    Article  CAS  Google Scholar 

  38. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition – fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562. https://doi.org/10.1021/ma9804951

    Article  CAS  Google Scholar 

  39. Allı A, Allı S, Hazer B, Zinn M (2022) Synthesis and characterization of Star-Shaped Block Copolymers composed of poly (3-hydroxy octanoate) and Styrene via RAFT polymerization. J Macromol Sci Part A: Pure and Appl Chem 59:526–536. https://doi.org/10.1080/10601325.2022.2092408

    Article  CAS  Google Scholar 

  40. Ozturk T, Atalar MN, Goktas M, Hazer B (2013) One-step synthesis of block-graft copolymers via simultaneous reversible-addition fragmentation chain transfer and ring-opening polymerization using a novel macroinitiator. J Polym Sci: Part A: Polym Chem 51(12):2651–2659. https://doi.org/10.1002/pola.26654

    Article  CAS  Google Scholar 

  41. Guzik M, Witko T, Steinbuchel A, Wojnarowska M, Soltysik M, Wawak S (2020) What has been trending in the research of polyhydroxyalkanoates? A systematic review. Front Bioengin Biotechnol 8:article959. https://doi.org/10.3389/fbioe.2020.00959

    Article  Google Scholar 

  42. Bedade DK, Edson CB, Gross RA (2021) Emergent approaches to efficient and sustainable polyhydroxyalkanoate production. Molecules 26(11):article3463. https://doi.org/10.3390/molecules26113463

    Article  CAS  Google Scholar 

  43. Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol 49:431–437. https://doi.org/10.1007/s002530051194

    Article  CAS  Google Scholar 

  44. Koray O, Koksal MS, Hazer B (2010) Simple production experiment of poly (3-hydroxy butyrate) for science laboratories and its importance for science process skills of prospective teachers. Energy Educ Sci Technol Part B-Soc Educ Stud 2(1–2):39–54

    Google Scholar 

  45. Kocer H, Borcakli M, Demirel S, Hazer B (2003) Production of bacterial polyesters from some various new substrates by Alcaligenes eutrophus and Pseudomonas oleovorans. Turk J Chem 27(3):365–374

    CAS  Google Scholar 

  46. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38(8):2434–2446. https://doi.org/10.1039/b812677c

    Article  CAS  PubMed  Google Scholar 

  47. Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74(1):1–12. https://doi.org/10.1007/s00253-006-0732-8

    Article  CAS  PubMed  Google Scholar 

  48. Hazer DB, Kilicay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng C 32(4):637–647. https://doi.org/10.1016/j.msec.2012.01.021

    Article  CAS  Google Scholar 

  49. Ashby RD, Solaiman DK, Strahan GD (2019) The Use of Azohydromonas lata DSM 1122 to produce 4-hydroxyvalerate-containing polyhydroxyalkanoate terpolymers, and unique polymer blends from mixed-cultures with Burkholderia sacchari DSM 17165. J Polym Environ 27:198–209. https://doi.org/10.1007/s10924-018-1332-2

    Article  CAS  Google Scholar 

  50. Guennec A, Brelle L, Balnois E, Linossier I, Renard E, Langlois V, Fay F, Chen GQ, Simon-Colin C, Vallée-Réhel K (2021) Antifouling properties of amphiphilic poly(3-hydroxyalkanoate): an environmentally-friendly coating. Biofouling 37(8):894–910. https://doi.org/10.1080/08927014.2021.1981298

    Article  CAS  PubMed  Google Scholar 

  51. Le Fer G, Babinot J, Versace D-L, Langlois V, Renard E (2012) An efficient thiol-ene chemistry for the preparation of amphiphilic PHA-based graft copolymers. Macromol Rapid Commun 33(23):2041–2045. https://doi.org/10.1002/marc.201200485

    Article  CAS  PubMed  Google Scholar 

  52. Domenek S, Langlois V, Renard E (2007) Bacterial polyesters grafted with poly(ethyelene glycol): Behaviour in aqueous media. Polym Degrad Stab 92(7):1384–1392. https://doi.org/10.1016/j.polymdegradstab.2007.03.001

    Article  CAS  Google Scholar 

  53. Hazer B, Akyol E, Şanal T, Guillaume S, Çakmakli B, Steinbuchel A (2019) Synthesis of novel biodegradable elastomers based on poly[3-hydroxy butyrate] and poly[3-hydroxy octanoate] via transamidation reaction. Polym Bull 76:919–932. https://doi.org/10.1007/s00289-018-2410-2

    Article  CAS  Google Scholar 

  54. Arkin AH, Hazer B (2002) Chemical modification of chlorinated microbial polyesters Biomacromolecules 3(6):1327–1335. DOI: https://doi.org/10.1021/bm020079v

  55. Arslan H, Hazer B, Kowalczuk M (2002) Synthesis and characterization of poly[(R,S)-3-hydroxybutyrate] telechelics and their use in the synthesis of poly(methyl methacrylate)-b-poly(3-hydroxybutyrate) block copolymers. J Appl Polym Sci 85(5):965–973. https://doi.org/10.1002/app.10435

    Article  CAS  Google Scholar 

  56. Loh XJ, Zhang Z-X, Wu Y-L, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly[(R)-3-hydroxybutyrate] and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42(1):194–202. https://doi.org/10.1021/ma8019865

    Article  CAS  Google Scholar 

  57. Arslan H, Menteş A, Hazer B (2004) Synthesis and characterization of diblock, triblock, and multiblock copolymers containing poly(3-hydroxy butyrate) units. J Appl Polym Sci 94(4):1789–1796. https://doi.org/10.1002/app.21112

    Article  CAS  Google Scholar 

  58. Raza ZA, Riaz S, Banat IM (2018) Polyhydroxyalkanoates: Properties and chemical modification approaches for their functionalization. Biotechnol Prog 34(1):29–41. https://doi.org/10.1002/btpr.2565

    Article  CAS  PubMed  Google Scholar 

  59. Chaber P, Kwiecien M, Zieba M, Sobota M, Adamus G (2017) The heterogeneous selective reduction of PHB as a useful method for preparation of oligodiols and surface modification. RSC Adv 7(56):35096–35104. https://doi.org/10.1039/C7RA06111K

    Article  CAS  Google Scholar 

  60. Hazer B (2015) Simple synthesis of amphiphilic poly(3-hydroxy alkanoate)s with pendant hydroxyl and carboxylic groups via thiol-ene photo click reactions. Polym Degr Stab 119:159–166. https://doi.org/10.1016/j.polymdegradstab.2015.04.024

    Article  CAS  Google Scholar 

  61. Hazer B (2010) Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci 2010:article 423460. https://doi.org/10.1155/2010/423460

  62. Hazer B (2020) Amphiphiles from poly(3-hydroxyalkanoates). In: Koller M (ed) The handbook of polyhydroxyalkanoates. CRC Press, Taylor & Francis, London, New York., pp 43–64

    Google Scholar 

  63. Erol A, Rosberg DBH, Hazer B, Göncü BS (2020) Biodegradable and biocompatible radiopaque iodinated poly-3-hydroxy butyrate: synthesis, characterization and in vitro/in vivo X-ray visibility. Polym Bull 77:275–289. https://doi.org/10.1007/s00289-019-02747-6

    Article  CAS  Google Scholar 

  64. Sato H, Nakamura M, Padermshoke A, Yamaguchi H, Terauchi H, Ekgasit S, Noda I, Ozaki Y (2004) Thermal behavior and molecular interaction of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by wide-angle X-ray diffraction. Macromolecules 37(10):3763–3769. https://doi.org/10.1021/ma049863t

    Article  CAS  Google Scholar 

  65. Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Polymer alloys of Nodax copolymers and poly(lactic acid). Macromol Biosci 4(3):269–275. https://doi.org/10.1002/mabi.200300093

    Article  CAS  PubMed  Google Scholar 

  66. Bayram C, Denkbas EB, Kiliçay E, Hazer B, Çakmak HB, Noda I (2008) Preparation and characterization of triamcinolone acetonide-loaded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx) microspheres. J Bioact Compat Polym 23(4):334–347. https://doi.org/10.1177/0883911508092790

    Article  CAS  Google Scholar 

  67. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828. https://doi.org/10.1021/ma00118a007

    Article  CAS  Google Scholar 

  68. Stawski D, Nowak A (2019) Thermal properties of poly(N,N-dimethylaminoethyl methacrylate). PLoS ONE 14(6):e0217441. https://doi.org/10.1371/journal.pone.0217441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Muller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 40(23):8361–8366. https://doi.org/10.1021/ma071203b

    Article  CAS  Google Scholar 

  70. Karjalainen E, Aseyev V, Tenhu H (2014) Influence of hydrophobic anion on solution properties of PDMAEMA. Macromolecules 47(6):2103–2111. https://doi.org/10.1021/ma5000706

    Article  CAS  Google Scholar 

  71. Hossain MdA, Mushill L, Rahaman MS, Mains SM, Vickers T, Tulaphol T, Dong J, Sathitsuksanoh N (2022) Upcycling agricultural waste to biodegradable polyhydroxyalkanoates by combined ambient alkaline pretreatment and bacterial fermentation. Industrial Crops & Products 185:114867. https://doi.org/10.1016/j.indcrop.2022.114867

    Article  CAS  Google Scholar 

  72. Allı A, Hazer B, Adamus G, Kowalczuk M (2017) Telechelic Polyhydroxyalkanoates /Polyhydroxybutyrates (PHAs/PHBs) in Handbook of Telechelic Polyesters, Polycarbonates, and Polyethers (editor: S. M. Guillaume). Pan Stanford Publishing, Singapore. Chapter 3. 65–113

  73. Hazer B, Eren M, Senemoğlu Y, Mod**ou T, Renard E, Langlois V (2020) Novel poly(3-hydroxy butyrate) macro RAFT agent. Synthesis and characterization of thermoresponsive block copolymers. J Polym Res 27:article147. https://doi.org/10.1007/s10965-020-02133-1

    Article  CAS  Google Scholar 

  74. Yin J-J, Wahid F, Zhang Q, Tao Y-C, Zhong C, Chu L-Q (2017) Facile incorporation of silver nanoparticles into quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes as bifunctional antibacterial coatings. Macromol Mater Eng 302(6):article 1700069. DOI: https://doi.org/10.1002/mame.201700069

  75. Perrier S (2017) 50th anniversary perspective: RAFT polymerization – a user guide. Macromolecules 50(19):7433–7447. https://doi.org/10.1021/acs.macromol.7b00767

    Article  CAS  Google Scholar 

  76. Buback M, Kurz CH, Schmaltz C (1998) Pressure dependence of propagation rate coefficients in free-radical homopolymerizations of methyl acrylate and dodecyl acrylate. Macromol Chem Phys 199(8):1721–1727. https://doi.org/10.1002/(SICI)1521-3935(19980801)199:8<1721::AID-MACP1721>3.0.CO;2-5

    Article  CAS  Google Scholar 

  77. Bruce C, Javakhishvili I, Fogelström L, Carlmark A, Hvilsted S, Malmström E (2014) Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL. RSC Adv 4:25809–25818. https://doi.org/10.1039/C4RA04325A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kapadokya University Research Funds (#KÜN.2020-BAGP-001).

Author information

Authors and Affiliations

Authors

Contributions

Baki Hazer: Supervision, Conceptualization. Fulya Taşçı: Conceptualization. Valerie Langlois: Conceptualization, Supervision. Tina Mod**ou: Conceptualization. Richard Ashby: Conceptualization, Supervision. Melahat Göktaş: Conceptualization. Baozhong Zhang: Conceptualization.

Corresponding authors

Correspondence to Baki Hazer or Melahat Göktaş.

Ethics declarations

Conflict of interest

Compliance with ethics requirements Authors have no financial relationship with the organization that sponsored the research.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazer, B., Mod**ou, T., Langlois, V. et al. Free Radical Polymerization of Dimethyl Amino Ethyl Methacrylate Initiated by Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Macroazo Initiator: Thermal and Physicochemical Characterization. J Polym Environ 31, 3688–3699 (2023). https://doi.org/10.1007/s10924-023-02857-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02857-3

Keywords

Navigation