Log in

Nanoceria-decorated Graphene Nanosheets Enhance Mechanical Properties and Bioactivity of a Degradable Polyurethane for Biomedical Applications

  • OriginalPaper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Redox-modulating ceria nanoparticles can impart bioactivity to biodegradable polymers for tissue regeneration but are limited by poor dispersion in the polymer matrix. Toward the development of biodegradable multifunctional biomaterials, cerium oxide (ceria)-decorated graphene-based hybrid nanoparticles were used as nanofillers in a polyurethane matrix. The polyurethane was synthesized using olive oil-based polyol to impart degradability to the composite. Hybrid nanoparticles consisting of ceria anchored on graphene sheets were synthesized by the hydrothermal process. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the anchoring of ceria nanoparticles on the graphene sheets. Polyurethane composites were prepared by in situ polymerization. Hybrid nanoparticle-infused composites showed uniform dispersion, unlike the agglomerated particles in ceria-infused composites. The hybrid nanocomposite showed improved mechanical properties compared to the ceria nanocomposite. The nanocomposite was non-toxic to pre-osteoblasts. The polyurethane demonstrated enhanced radical-scavenging potential after adding the hybrid nanoparticles in contrast to a neat polymer or graphene oxide-infused composite. The cells exhibited improved osteogenic differentiation on the hybrid composites than on the neat polyurethane or the GO-composite. Thus, the graphene and ceria in the hybrid particles synergistically render multifunctional properties to polyurethanes for potential application in bone tissue regeneration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Chan BP, KW Leong (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nikolova MP, Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds. Rev Bioact Mater 4:271

    Google Scholar 

  3. Guo ZC, Poot AA, Grijpma DW (2021) Advanced polymer-based composites and structures for biomedical applications. Eur Polym J 149:110388

    Article  CAS  Google Scholar 

  4. Fathi-Achachelouei M, Knopf-Marques H, da Silva CER et al (2019) Use of nanoparticles in tissue Engineering and Regenerative Medicine. Front Bioeng Biotech 7:113

    Article  Google Scholar 

  5. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong ZK, JF Mano (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70(13):1764

    Article  CAS  Google Scholar 

  6. Kumar S, Chatterjee K (2015) Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold Nanoscale 7 (5): 2023

  7. Jaidev LR, Kumar S, Chatterjee K (2017) Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloid Surf B 159:293

    Article  CAS  Google Scholar 

  8. Jiang LH, Yao MG, Liu B et al (2012) Controlled synthesis of CeO2/Graphene nanocomposites with highly enhanced Optical and Catalytic Properties. J Phys Chem C 116(21):11741

    Article  CAS  Google Scholar 

  9. Khan M, Tahir MN, Adil SF et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753

    Article  CAS  Google Scholar 

  10. Kumar S, Chatterjee K (2016) Comprehensive Review on the Use of Graphene-Based substrates for Regenerative Medicine and Biomedical Devices Acs. Appl Mater Inter 8(40):26431

    Article  CAS  Google Scholar 

  11. Wang R, Crozier PA, Sharma R (2009) Structural Transformation in Ceria nanoparticles during redox processes. J Phys Chem C 113(14):5700

    Article  CAS  Google Scholar 

  12. Li HR, **a P, Pan S et al (2020) The advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int J Nanomed 15:7199

    Article  CAS  Google Scholar 

  13. Kargozar S, Baino F, Hoseini SJ et al (2018) Biomedical applications of nanoceria: new roles for an old player Nanomedicine. (Lond) 13(23):3051

    CAS  Google Scholar 

  14. Liu X, Wu J, Liu Q et al (2021) Synthesis-temperature-regulated multi-enzyme-mimicking activities of ceria nanozymes. J Mater Chem B 9(35):7238

    Article  CAS  PubMed  Google Scholar 

  15. Bhushan B, Gopinath P (2015) Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J Mater Chem B 3(24):4843

    Article  CAS  PubMed  Google Scholar 

  16. Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM (2016) Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine Antioxidants (Basel) 5 (2):15

  17. Karakoti AS, Tsigkou O, Yue S et al (2010) Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem 20(40):8912

    Article  CAS  Google Scholar 

  18. Ji ZY, Shen XP, Li MZ, Zhou H, Zhu GX, Chen KM (2013) Synthesis of reduced graphene oxide/CeO2 nanocomposites and their photocatalytic properties Nanotechnology 24 (11): 115603

  19. De S, Mohanty S, Nayak SK (2015) Nano-CeO2 decorated graphene based chitosan nanocomposites as enzymatic biosensing platform: fabrication and cellular biocompatibility assessment. Bioprocess Biosyst Eng 38(9):1671

    Article  CAS  PubMed  Google Scholar 

  20. Wendels S, Averous L (2021) Biobased polyurethanes for biomedical applications Bioact Mater 6 (4): 1083

  21. MA Sawpan (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25(8):1

    Article  Google Scholar 

  22. Li Y, Luo X, Hu S (2015) Polyols and polyurethanes from vegetable oils and their derivatives Bio-based Polyols and Polyurethanes: 15

  23. FG Gao (2004) Clay/polymer composites: the. story Mater Today 7(11):50

    Article  Google Scholar 

  24. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Shameli K (2011) Comparison of in situ polymerization and solution-dispersion techniques in the preparation of Polyimide/Montmorillonite (MMT). Nanocomposites Int J Mol Sci 12(9):6040

    Article  PubMed  Google Scholar 

  25. Nilawar S, Chatterjee K (2022) Olive oil-derived degradable polyurethanes for bone tissue regeneration. Ind Crop Prod 185:115136

    Article  CAS  Google Scholar 

  26. Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R (2018) Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioact Mater 3(2):201

    Article  PubMed  Google Scholar 

  27. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907

    Article  CAS  PubMed  Google Scholar 

  28. Min CY, He ZB, Liu DD et al (2019) Ceria/reduced Graphene Oxide Nanocomposite: Synthesis, Characterization, and Its Lubrication Application Chemistryselect 4 (15): 4615

  29. Vanitha M, Keerthi P, Cao N, Balasubramanian (2015) Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications. J Alloy Compd 644:534

    Article  CAS  Google Scholar 

  30. Wu ZS, Wang DW, Ren W et al (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20(20):3595

    Article  CAS  Google Scholar 

  31. Weber WH, Hass KC, JR McBride (1993) Raman study of CeO 2: second-order scattering, lattice dynamics, and particle-size effects. Phys Rev B 48(1):178

    Article  CAS  Google Scholar 

  32. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36

    Article  CAS  PubMed  Google Scholar 

  33. Srivastava M, Das AK, Khanra P, Uddin ME, Kim NH, Lee JH (2013) Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. J Mater Chem A 1(34):9792

    Article  CAS  Google Scholar 

  34. Deshpande S, Patil S, Kuchibhatla SVNT, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87(13):133113

    Article  Google Scholar 

  35. **a W, Zhao J, Wang T et al (2017) Anchoring ceria nanoparticles on graphene oxide and their radical scavenge properties under gamma irradiation environment. Phys Chem Chem Phys 19(25):16785

    Article  CAS  PubMed  Google Scholar 

  36. Mizera K, Ryszkowska J, Kuranska M, Prociak A (2020) The effect of rapeseed oil-based polyols on the thermal and mechanical properties of ureaurethane elastomers. Polym Bull 77(2):823

    Article  CAS  Google Scholar 

  37. Ali A, Yusoh K, SF Hasany (2014) Synthesis and Physicochemical Behaviour of Polyurethane-Multiwalled Carbon Nanotubes Nanocomposites Based on Renewable Castor OilPolyols J Nanomater2014

  38. An XL, Ma HB, Liu B, Wang JZ (2013) Graphene Oxide Reinforced Polylactic Acid/Polyurethane AntibacterialComposites J Nanomater2013

  39. Wu G, Xu X, He X, Yan Y (2018) Preparation and Characterization of Graphene Oxide-Modified Sapium sebiferum Oil-Based Polyurethane Composites with Improved Thermal and Mechanical Properties Polymers (Basel) 10 (2):133

  40. Wang C, Dai L, Yang Z et al (2018) Reinforcement of Castor Oil-Based Polyurethane with Surface Modification of Attapulgite Polymers (Basel) 10 (11):1236

  41. Fu SY, Feng XQ, Lauke B, YW Mai (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites Compos Part. B-Eng 39(6):933

    Google Scholar 

  42. Gupta TK, Singh BP, Tripathi RK et al (2015) Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites RSC Advances 5 (22):16921

  43. IA Ovid’Ko (2013) Enhanced mechanical properties of polymer-matrix nanocomposites reinforced by graphene inclusions: a review rev. Adv Mater Sci 34(1):19

    Google Scholar 

  44. Kumar S, Raj S, Jain S, Chatterjee K (2016) Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver hybrid for biomedical applications. Mater Des 108:319

    Article  CAS  Google Scholar 

  45. Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and Aggregation/Agglomeration of nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites. Nanoscale Res Lett 13(1):214

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yasmeen S, Khan MR, Park K et al (2020) Preparation of a hydrophobic cerium oxide nanoparticle coating with polymer binder via a facile solution route Ceram Int 46 (8): 12209

  47. Saravanan S, Vimalraj S, Anuradha D (2018) Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Biomed Pharmacother 107:908

    Article  CAS  PubMed  Google Scholar 

  48. Ma XY, Zhang WD (2009) Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stabil 94(7):1103

    Article  CAS  Google Scholar 

  49. Chait A, Iverius PH, Brunzell JD (1982) Lipoprotein lipase secretion by human monocyte-derived macrophages. J Clin Invest 69(2):490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Papageorgiou GZ, Terzopoulou Z, Bikiaris D et al (2014) Evaluation of the formed interface in biodegradable poly(L-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochimica acta 597:48

    Article  CAS  Google Scholar 

  51. Karakoti AS, Monteiro-Riviere NA, Aggarwal R et al (2008) Nanoceria as antioxidant: Synthesis and biomedical applications JOM 60 (3): 33

  52. Tyeb S, Kumar N, Kumar A, Verma V (2018) Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohydr Polym 200:572

    Article  CAS  PubMed  Google Scholar 

  53. Panda PK, Dash P, Yang JM, Chang YH (2022) Development of chitosan, graphene oxide, and cerium oxide composite blended films: structural, physical, and functional properties Cellulose 29 (4): 2399

  54. Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20(11):1

    Article  CAS  Google Scholar 

  55. Huang Q, Gao B, Jie Q et al (2014) Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis Bone 66: 306

  56. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, LM McNamara (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cells Mater 23:13

    Article  CAS  Google Scholar 

  57. Natarajan J, Madras G, Chatterjee K (2017) Development of Graphene Oxide-/Galactitol polyester-based biodegradable composites for Biomedical Applications. ACS Omega 2(9):5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nilawar S, Chatterjee K (2022) Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization Biomacromolecules 23 (1): 226

  59. Unnithan AR, Sasikala ARK, Sathishkumar Y, Lee YS, Park CH, Kim CS (2014) Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications Ceram Int 40 (8): 12003

  60. Yousefi M, Dadashpour M, Hejazi M et al (2017) Antibacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mat Sci Eng C-Mater 74:568

    Article  CAS  Google Scholar 

  61. Das S, Singh S, Dowding JM et al (2012) The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments 33 (31):7746

Download references

Acknowledgements

We thank Dr. Ujjval Bansal for his help in the TEM analysis. We thank Mr. Pritiranjan Mondal for his assistance in the Raman experiments and Ms. Sankeerthana Avasarala for her help in the TGA experiments. We thank AFMM and NNCF at IISc for access to characterization facilities.

Funding

This work was funded by the Department of Science and Technology (DST), Goveremernt of India (DST/NM/NB/2018/119(G)).

Author information

Authors and Affiliations

Authors

Contributions

Sagar Nilawar designed the study, performed experiments, analyzed data, and prepared the first draft of the manuscript. Mohankumar BS performed the experiments and analyzed the data. Kaushik Chatterjee designed the study, edited the manuscript, acquired funding, and supervised the work as the senior author.

Corresponding author

Correspondence to Kaushik Chatterjee.

Ethics declarations

Supporting Information

Supporting figures of reaction scheme demonstrating the synthesis of polyurethane from olive oil, TGA analysis of different particles, FTIR analysis of the various nanocomposites, AFM micrographs of PU and composites, % inhibition of DPPH free radicals for various nanocomposites and WST-1 assay for cell viability against ROS for various nanocomposites, SBF immersion assay analysis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilawar, S., BS, M. & Chatterjee, K. Nanoceria-decorated Graphene Nanosheets Enhance Mechanical Properties and Bioactivity of a Degradable Polyurethane for Biomedical Applications. J Polym Environ 31, 2941–2955 (2023). https://doi.org/10.1007/s10924-023-02786-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02786-1

Keywords

Navigation