Log in

Transformation of Urea–Formaldehyde Resin Waste into Pb(II) and Cu(II) Adsorbent Toward a Circular Materials Economy Approach

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Two potential hazardous substance problems are urgent to be solved. (1) Urea–formaldehyde resin waste that may produce various toxic compounds during conventional treatment; (2) Toxic heavy metal ions released in water that pose a severe threat to human health and ecosystems. Herein, innovative conversion of urea–formaldehyde resin waste into an effective adsorbent for hazardous heavy metal ions was achieved by a simple degradation–repolymerization method, toward a circular materials economy approach. The detailed effects of temperature and time on the degradation efficiency were studied. Plausible degradation mechanism was proposed. To increase the adsorption performance, the challenge of affording urea–formaldehyde resins with three-dimensional network structures was overcome by the ice templating. The effects of cooling rate and added water content on the morphology of urea–formaldehyde resin were investigated. Due to its three-dimensional network structure and high amine density, the prepared adsorbent exhibited removal rate up to 95.68% for Pb(II) and 80.80% for Cu(II), much higher than untreated urea–formaldehyde resin waste. The effect of solution pH on the adsorption performance of heavy metal ions was also discussed. Moreover, after five cycles, removal rates were still up to 81.34% for Pb(II) and 64.37% for Cu(II), indicating its good cycle stability. Its large source of raw materials, convenient conversion method, and high removal rate make this method extremely competitive in the areas of both polymer degradation and heavy metal ion removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun M (1984) Formaldehyde issue: back to square one. Science 224:968–969

    Article  CAS  PubMed  Google Scholar 

  3. Marvel CS, Elliott JR (1946) The structure of urea-formaldehyde resins. J Am Chem Soc 68:1681–1686

    Article  CAS  PubMed  Google Scholar 

  4. Babich MA (1998) Risk assessment of low-level chemical exposures from consumer products under the U.S. Consumer Product Safety Commission chronic hazard guidelines. Environ Health Perspect 106:387–390

    PubMed  PubMed Central  Google Scholar 

  5. Harris JC, Rumack BH (1981) Toxicology of urea formaldehyde and toxicology of urea formaldehyde and polyurethane foam insulation. JAMA 245:243–246

    Article  CAS  PubMed  Google Scholar 

  6. Zhan L, Jiang L, Zhang Y, Gao B, Xu Z (2020) Reduction, detoxification and recycling of solid waste by hydrothermal technology: a review. Chem Eng J 390:124651

    Article  CAS  Google Scholar 

  7. Shi R, Zhang Z-Y, Zhang F-S (2018) An efficient approach for spaceflight solid waste treatment: Co-disposal with hazardous medicine by hydrothermal oxidation process. Chem Eng J 349:204–213

    Article  CAS  Google Scholar 

  8. Ren T, Wang Y, Wu N, Qing Y, Li X, Wu Y, Liu M (2022) Degradation of urea-formaldehyde resin residues by a hydrothermal oxidation method into recyclable small molecular organics. J Hazard Mater 426:127783

    Article  CAS  PubMed  Google Scholar 

  9. Qian Y, Xu W, Zhan J-H, Jia X, Zhang F (2021) Atomic insights into the thermal runaway process of hydrogen peroxide and 1,3,5-trimethybenzene mixture: combining ReaxFF MD and DFT methods. Process Saf Environ 147:578–588

    Article  CAS  Google Scholar 

  10. Jia X, Sun F, Fei Y, ** M, Zhang F, Xu W, Shi N, Lv Z (2018) Explosion characteristics of mixtures containing hydrogen peroxide and working solution in the anthraquinone route to hydrogen peroxide. Process Saf Environ 119:218–222

    Article  CAS  Google Scholar 

  11. Liu M, Wang Y, Wu Y, Wan H (2018) Hydrolysis and recycling of urea formaldehyde resin residues. J Hazard Mater 355:96–103

    Article  CAS  PubMed  Google Scholar 

  12. Khonakdar Dazmiri M, Valizadeh Kiamahalleh M, Valizadeh Kiamahalleh M, Mansouri HR, Moazami V (2019) Revealing the impacts of recycled urea–formaldehyde wastes on the physical–mechanical properties of MDF. Eur J Wood Wood Prod 77:293–299

    Article  CAS  Google Scholar 

  13. Liu F, Chen X, Liu Y, Niu Z, Tang H, Mao S, Li N, Chen G, **ang H (2021) Serum cardiovascular-related metabolites disturbance exposed to different heavy metal exposure scenarios. J Hazard Mater 415:125590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Long Z, Zhu H, Bing H, Tian X, Wang Z, Wang X, Wu Y (2021) Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. J Hazard Mater 420:126638

    Article  CAS  PubMed  Google Scholar 

  15. Sierra I, Pérez-Quintanilla D (2013) Heavy metal complexation on hybrid mesoporous silicas: an approach to analytical applications. Chem Soc Rev 42:3792–3807

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Zhang L, Gao R, Zhong L, Xue J (2021) CaCO3-coated PVA/BC-based composite for the simultaneous adsorption of Cu(II), Cd(II), Pb(II) in aqueous solution. Carbohydr Polym 267:118227

    Article  CAS  PubMed  Google Scholar 

  17. Zhang P, Gong J-L, Zeng G-M, Deng C-H, Yang H-C, Liu H-Y, Huan S-Y (2017) Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem Eng J 322:657–666

    Article  CAS  Google Scholar 

  18. Wang H, Gao Q, Li H, Wang G, Han B, **a K, Zhou C (2020) Hydrous titania nanosheets constructed hierarchical hollow microspheres as a highly efficient dual-use decontaminant for elimination of heavy metal ions and organic pollutants. Chem Eng J 381:122638

    Article  CAS  Google Scholar 

  19. Zhang L, Mu C, Zhong L, Xue J, Zhou Y, Han X (2019) Recycling of Cr (VI) from weak alkaline aqueous media using a chitosan/ triethanolamine/Cu (II) composite adsorbent. Carbohydr Polym 205:151–158

    Article  CAS  PubMed  Google Scholar 

  20. Ahmadijokani F, Molavi H, Rezakazemi M, Tajahmadi S, Bahi A, Ko F, Aminabhavi TM, Li J-R, Arjmand M (2022) UiO-66 metal–organic frameworks in water treatment: a critical review. Prog Mater Sci 125:100904

    Article  CAS  Google Scholar 

  21. Pagliaccia B, Carretti E, Severi M, Berti D, Lubello C, Lotti T (2022) Heavy metal biosorption by extracellular polymeric substances (EPS) recovered from anammox granular sludge. J Hazard Mater 424:126661

    Article  CAS  PubMed  Google Scholar 

  22. Kumar R, Barakat MA, Daza YA, Woodcock HL, Kuhn JN (2013) EDTA functionalized silica for removal of Cu(II), Zn(II) and Ni(II) from aqueous solution. J Colloid Interface Sci 408:200–205

    Article  CAS  PubMed  Google Scholar 

  23. Sellaoui L, Hessou EP, Badawi M, Netto MS, Dotto GL, Silva LFO, Tielens F, Ifthikar J, Bonilla-Petriciolet A, Chen Z (2021) Trap** of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: new interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem Eng J 420:127712

    Article  CAS  Google Scholar 

  24. Li Y, Yu H, Liu L, Yu H (2021) Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. J Hazard Mater 420:126655

    Article  CAS  PubMed  Google Scholar 

  25. Ma D, Wei J, Zhao Y, Chen Y, Tang S (2020) The removal of uranium using novel temperature sensitive urea-formaldehyde resin: adsorption and fast regeneration. Sci Total Environ 735:139399

    Article  CAS  PubMed  Google Scholar 

  26. Qu P, Li Y, Huang H, Chen J, Yu Z, Huang J, Wang H, Gao B (2020) Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+, Cd2+, and Cu2+. J Hazard Mater 396:122664

    Article  CAS  PubMed  Google Scholar 

  27. Qu P, Li Y, Huang H, Wu G, Chen J, He F, Wang H, Gao B (2020) Foamed urea-formaldehyde microspheres for removal of heavy metals from aqueous solutions. Chemosphere 241:125004

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Duan H, Wang X, Meng X, Qin D (2015) Fabrication of porous resins via solubility differences for adsorption of cadmium (II). Chem Eng J 262:250–259

    Article  CAS  Google Scholar 

  29. Wibowo ES, Park B-D, Causin V (2022) Recent advances in urea-formaldehyde resins: converting crystalline thermosetting polymers back to amorphous ones. Polym Rev 62:722–756

    Article  CAS  Google Scholar 

  30. Joukhdar H, Seifert A, Jüngst T, Groll J, Lord MS, Rnjak-Kovacina J (2021) Ice templating soft matter: fundamental principles and fabrication approaches to tailor pore structure and morphology and their biomedical applications. Adv Mater 33:e2100091

    Article  PubMed  Google Scholar 

  31. Jada SS (1988) The structure of urea–formaldehyde resins. J Appl Polym Sci 35:1573–1592

    Article  CAS  Google Scholar 

  32. Li A, Kan C, Du Y, Liu D (2006) Study on the evolvement of structure in synthesis of urea-formaldehyde resins by FTIR. Acta Phys Chim Sin 22:873–877

    Article  CAS  Google Scholar 

  33. Chuang IS, Maciel GE (1992) Carbon-13 CP/MAS NMR study of the structural dependence of urea-formaldehyde resins on formaldehyde-to-urea molar ratios at different urea concentrations and pH values. Macromolecules 25:3204–3226

    Article  CAS  Google Scholar 

  34. Myers GE (1981) Investigation of urea–formaldehyde polymer cure by infrared. J Appl Polym Sci 26:747–764

    Article  CAS  Google Scholar 

  35. Nuryawan A, Park B-D, Singh AP (2014) Comparison of thermal curing behavior of liquid and solid urea–formaldehyde resins with different formaldehyde/urea mole ratios. J Therm Anal Calorim 118:397–404

    Article  CAS  Google Scholar 

  36. Park B-D, Kim YS, Singh AP, Lim KP (2003) Reactivity, chemical structure, and molecular mobility of urea–formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C CP/MAS NMR spectroscopy. J Appl Polym Sci 88:2677–2687

    Article  CAS  Google Scholar 

  37. Xamena FL, Areán CO, Spera S, Merlo E, Zecchina A (2004) Formaldehyde oligomerization on silicalite: an FTIR and NMR study. Catal Lett 95:51–55

    Article  Google Scholar 

  38. Shukla PG, Sivaram S, Mohanty B (1992) Structure and dynamics of starch crosslinked with urea-formaldehyde polymers by carbon-13 CP/MAS NMR spectroscopy. Macromolecules 25:2746–2751

    Article  CAS  Google Scholar 

  39. Taylor R, Pragnell RJ, McLaren JV, Snape CE (1982) Evaluation of NMR spectroscopy for the quantitative characterization of urea—formaldehyde resins. Talanta 29:489–494

    Article  CAS  PubMed  Google Scholar 

  40. Steinhof O, Kibrik ÉJ, Scherr G, Hasse H (2014) Quantitative and qualitative 1H, 13C, and 15N NMR spectroscopic investigation of the urea-formaldehyde resin synthesis. Magn Reson Chem 52:138–162

    Article  CAS  PubMed  Google Scholar 

  41. Wang F, Wang Y, Fang Y, Zhu J, Li X, Qi J, Wu W (2020) Synthesis of nitrogen-doped flower-like carbon microspheres from urea-formaldehyde resins for high-performance supercapacitor. J Alloys Compds 812:152109

    Article  CAS  Google Scholar 

  42. Katoueizadeh E, Zebarjad SM, Janghorban K (2019) Investigating the effect of synthesis conditions on the formation of urea–formaldehyde microcapsules. J Mater Res Technol 8:541–552

    Article  CAS  Google Scholar 

  43. Zhou X, Yin L, Yang B, Chen C, Chen W, **e Y, Yang X, Pham JT, Liu S, Xue L (2021) Programmable local orientation of micropores by mold-assisted ice templating. Small Methods 5:2000963

    Article  CAS  Google Scholar 

  44. Yang J, Yang W, Chen W, Tao X (2020) An elegant coupling: freeze-casting and versatile polymer composites. Prog Polym Sci 109:101289

    Article  CAS  Google Scholar 

  45. Deville S (2019) Wood-like polymeric materials by ice templating. Natl Sci Rev 6:184–185

    Article  PubMed  Google Scholar 

  46. Papa E, Mor M, Natali Murri A, Landi E, Medri V (2020) Ice-templated geopolymer beads for dye removal. J Colloid Interface Sci 572:364–373

    Article  CAS  PubMed  Google Scholar 

  47. Gupta K, Joshi P, Gusain R, Khatri OP (2021) Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coordin Chem Rev 445:214100

    Article  CAS  Google Scholar 

  48. Zhao J, Liu J, Li N, Wang W, Nan J, Zhao Z, Cui F (2016) Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: adsorption behavior and process study. Chem Eng J 304:737–746

    Article  CAS  Google Scholar 

  49. Kosa SA, Al-Zhrani G, Abdel Salam M (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181–182:159–168

    Article  Google Scholar 

  50. Hua R, Li Z (2014) Sulfhydryl functionalized hydrogel with magnetism: synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem Eng J 249:189–200

    Article  CAS  Google Scholar 

  51. Liu Y, Zhang W, Zhao C, Wang H, Chen J, Yang L, Feng J, Yan W (2019) Study on the synthesis of poly(pyrrole methane)s with the hydroxyl in different substituent position and their selective adsorption for Pb2+. Chem Eng J 361:528–537

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funding was given for the work and paper.

Author information

Authors and Affiliations

Authors

Contributions

TC and HH conceived the idea and designed the experiments. TC and XH carried out the experiments, and GX analyzed the data. TC, RY, and GX co-wrote the manuscript, and all authors participated in data analysis and discussions and read and edited the manuscript. LZ and QW directed the project.

Corresponding authors

Correspondence to Hongbin Hou, Liang Zhang or Qinggang Wang.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest and paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1831 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T., Hou, H., Xu, G. et al. Transformation of Urea–Formaldehyde Resin Waste into Pb(II) and Cu(II) Adsorbent Toward a Circular Materials Economy Approach. J Polym Environ 31, 2612–2623 (2023). https://doi.org/10.1007/s10924-022-02755-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02755-0

Keywords

Navigation