Log in

Chemically-Crosslinked Xylan/Graphene Oxide Composite Hydrogel for Copper Ions Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The chemically-crosslinked composite hydrogel based on acylated xylan and silanized graphene oxide was prepared via free radical polymerization as a novel adsorbent for the removal of Cu2+ ions from aqueous solution. The chemical structures and morphologies of the silanized graphene oxide and acylated xylan as well as the prepared hydrogels were characterized by FT-IR, XPS, SEM and TEM. The swelling ratios of the prepared hydrogels were determined, and the results showed that the chemically-crosslinked hydrogel was pH-sensitive, and the swelling kinetics of the hydrogels followed Schott second-order kinetic. The optimum pH for the adsorption of Cu2+ ions onto the chemically-crosslinked composite hydrogel was found at the value of 5 and the maximum adsorption amount of Cu2+ ions was evaluated to be 228 mg/g. The adsorption isotherm accorded with the Freundlich model, and the pseudo-second order kinetic model was suitable to describe the adsorption process. The study of adsorption thermodynamics indicated that the adsorption of Cu2+ ions onto the chemically-crosslinked composite hydrogel was endothermal and spontaneous, and the adsorption amount rose with an increase in temperature. In addition, higher desorption percentages of Cu2+ ions from the used hydrogel were also achieved (77.3% after recycling for 6 times). All obtained results indicated that the prepared chemically-crosslinked hydrogel is promising for water treatment and collection of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shan S, Sun X-F, **e Y, Li W, Ji T (2021) High-performance hydrogel adsorbent based on cellulose, hemicellulose, and lignin for copper(II) ion removal. Polymers 13:3063. https://doi.org/10.3390/polym13183063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117–118. https://doi.org/10.1038/185117a0

    Article  Google Scholar 

  3. Dou D, Wei D, Guan X, Liang Z, Lan L, Lan X, Liu P, Mo H, Lan P (2022) Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels. J Hazard Mater 423:127137. https://doi.org/10.1016/j.jhazmat.2021.127137

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Su YJ, Zhu X, Ye DD, Chen R, Liao Q (2022) Flexible enzymatic biofuel cell based on 1, 4-naphthoquinone/MWCNT-Modified bio-anode and polyvinyl alcohol hydrogel electrolyte. Biosens Bioelectron 198:113833. https://doi.org/10.1016/j.bios.2021.113833

    Article  CAS  PubMed  Google Scholar 

  5. Mredha MTI, Jeon I (2022) Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications. Prog Mater Sci 124:100870

    Article  CAS  Google Scholar 

  6. Li YJ, Sun X-F, Ye Q, Liu BC, Wu YG (2014) Preparation and property of novel hemicellulose-based magnetic hydrogel. Acta Phys-Chim Sin 30:111–120

    Article  CAS  Google Scholar 

  7. Alavi M, Nokhodchi A (2022) Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellulose 29:1331–1347

    Article  CAS  Google Scholar 

  8. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R (2021) Preparation of cellulose-based hydrogel: A review. J Mater Res Technol 10:935–952

    Article  CAS  Google Scholar 

  9. Alavi M, Rai M (2021) Antibacterial and wound healing activities of micro/nanocarriers based on carboxymethyl and quaternized chitosan derivatives. Biopolymer-based nano films, Elsevier, pp.191–201. https://doi.org/10.1016/B978-0-12-823381-8.00009-0

  10. Yue YY, Shen ST, Cheng WL, Han GP, Wu QL, Jiang JC (2022) Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloid Surface A 636:128035. https://doi.org/10.1016/j.colsurfa.2021.128035

    Article  CAS  Google Scholar 

  11. Sun XF, Hao Y, Cao Y, Zeng Q (2019) Superadsorbent hydrogel based on lignin and montmorillonite for Cu(II) ions removal from aqueous solution. Int J Biol Macromol 127:511–519

    Article  CAS  PubMed  Google Scholar 

  12. Guo S, Garaj S, Bianco A, Ménard-Moyon C (2022) Controlling covalent chemistry on graphene oxide. Nat Rev Phys. https://doi.org/10.1038/s42254-022-00422-w

    Article  Google Scholar 

  13. Ma L, **e G, Luo P, Zhang L, Fan Y, He Y (2022) Dispersion stability of graphene oxide in extreme environments and its applications in shale exploitation. ACS Sustainable Chem Eng 10:2609–2623

    Article  CAS  Google Scholar 

  14. Yan S, Song H, Li Y, Yang J, Jia X, Wang S, Yang X (2022) Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl Catal B-Environ 301:120820

    Article  CAS  Google Scholar 

  15. Yeh SH, Huang MS, Huang CH (2022) Electrochemical sensors for sulfamethoxazole detection based on graphene oxide/graphene layered composite on indium tin oxide substrate. J Taiwan Inst Chem E 131:104155

    Article  CAS  Google Scholar 

  16. Wang C, Dong W, Li A, Atinafu DG, Wang G, Lu Y (2022) The reinforced photothermal effect of conjugated dye/graphene oxide-based phase change materials: Fluorescence resonance energy transfer and applications in solar-thermal energy storage. Chem Eng J 428:130605

    Article  CAS  Google Scholar 

  17. Huang Q, Zhang S, Li X, Wu Y, Liu Y, Ran J, Cui P, Fu C-F, Ding L, Xu T (2022) Intelligent graphene oxide membranes with pH tunable channels for water treatment. Chem Eng J 431:133462

    Article  CAS  Google Scholar 

  18. Ming X, Guo A, Zhang Q, Guo Z, Yu F, Hou B, Wang Y, Homewood KP, Wang X (2020) 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon 167:285–295

    Article  CAS  Google Scholar 

  19. Liu T, Liu X, Graham N, Yu W, Sun K (2020) Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J Membrane Sci 593:117431

    Article  CAS  Google Scholar 

  20. Gu D, Fein JB (2015) Adsorption of metals onto graphene oxide: Surface complexation modeling and linear free energy relationships. Colloid Surface A 481:319–327

    Article  CAS  Google Scholar 

  21. El-Shafai NM, Shukry M, El-Mehasseb IM, Abdelfatah M, Ramadan MS, El-Shaer A, El-Kemary M (2020) Electrochemical property, antioxidant activities, water treatment and solar cell applications of titanium dioxide–zinc oxide hybrid nanocomposite based on graphene oxide nanosheet. Mater Sci Eng B 259:114596

    Article  CAS  Google Scholar 

  22. Dong L, Fan W, Tong X, Zhang H, Chen M, Zhao Y (2018) A CO2-responsive graphene oxide/polymer composite nanofiltration membrane for water purification. J Mater Chem A 6:6785–6791

    Article  CAS  Google Scholar 

  23. Yadav S, Ibrar I, Altaee A, Samal AK, Karbassiyazdi E, Zhou J, Bartocci P (2022) High-Performance mild annealed CNT/GO-PVA composite membrane for brackish water treatment. Sep Purif Technol 285:120361

    Article  CAS  Google Scholar 

  24. Alkhouzaam A, Qiblawey H (2021) Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. Chemosphere 274:129853

    Article  CAS  PubMed  Google Scholar 

  25. Shi Y, Wan D, Huang J, Liu Y, Li J (2020) Stable LBL self-assembly coating porous membrane with 3D heterostructure for enhanced water treatment under visible light irradiation. Chemosphere 252:126581

    Article  CAS  PubMed  Google Scholar 

  26. Lee SJ, Nah H, Heo DN, Kim K-H, Seok JM, Heo M, Moon H-J, Lee D, Lee JS, An SY, Hwang Y-S, Ko W-K, Kim SJ, Sohn S, Park SA, Park S-Y, Kwon IK (2020) Induction of osteogenic differentiation in a rat calvarial bone defect model using an in situ forming graphene oxide incorporated glycol chitosan/oxidized hyaluronic acid injectable hydrogel. Carbon 168:264–277

    Article  CAS  Google Scholar 

  27. Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W (2021) Poly (N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog Mater Sci 115:100702

    Article  CAS  Google Scholar 

  28. Dai H, Zhang Y, Ma L, Zhang H, Huang H (2019) Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels. Carbohydr Polym 215:366–376

    Article  CAS  PubMed  Google Scholar 

  29. Sun X-F, Zhang T, Wang HH (2021) Hemicelluloses-based hydrogels. In: Giri TK, Ghosh B (eds) Plant and algal hydrogels for drug delivery and regenerative medicine. Woodhead Publishing, pp 181–216

    Chapter  Google Scholar 

  30. Sun X-F, Ye Q, **g Z, Li Y (2014) Preparation of hemicellulose-g-poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polym Compos 35:45–52

    Article  CAS  Google Scholar 

  31. Sun X-F, Gan Z, **g ZX, Wang HH, Wang D, ** YN (2015) Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 132:41606

    Article  CAS  Google Scholar 

  32. Sun X-F, Liu B, **g Z, Wang H (2015) Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 118:16–23

    Article  CAS  PubMed  Google Scholar 

  33. Sun X-F, Zeng Q, Wang H, Hao Y (2019) Preparation and swelling behavior of pH/temperature responsive semi-IPN hydrogel based on carboxymethyl xylan and poly(N-isopropyl acrylamide). Cellulose 26:1909–1922

    Article  CAS  Google Scholar 

  34. Sun X-F, Wang HH, **g ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366

    Article  CAS  PubMed  Google Scholar 

  35. Yoo MJ, Park HB (2019) Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon 141:515–522

    Article  CAS  Google Scholar 

  36. Zeng Q, Liu Y, Liu Q, Liu P, He Y, Zeng Y (2020) Preparation and modification mechanism analysis of graphene oxide modified asphalts. Constr Build Mater 238:117706

    Article  CAS  Google Scholar 

  37. Sun X-F, **g Z, Fowler P, Wu Y, Rajaratnam M (2011) Structural characterization and isolation of lignin and hemicelluloses from barley straw. Ind Crop Prod 33:588–598

    Article  CAS  Google Scholar 

  38. Li M, Wang C (2019) Preparation and characterization of GO/PEG photo-thermal conversion form-stable composite phase change materials. Renew Energ 141:1005–1012

    Article  CAS  Google Scholar 

  39. Lokhande AC, Qattan IA, Lokhande CD, Patole SP (2020) Holey graphene: an emerging versatile material. J Mater Chem A 8:918–977

    Article  CAS  Google Scholar 

  40. Jiao D, **e Z, Wan Q, Qu M (2019) Reduced irreversible capacities of graphene oxide-based anodes used for lithium ion batteries via alkali treatment. J Energy Chem 37:73–81

    Article  Google Scholar 

  41. Hernaez M, Acevedo B, Mayes AG, Melendi-Espina S (2019) High-performance optical fiber humidity sensor based on lossy mode resonance using a nanostructured polyethylenimine and graphene oxide coating. Sensor Actuat B-Chem 286:408–414

    Article  CAS  Google Scholar 

  42. Sun XF, Li YJ (2013) Functional modification and preparation of superparamagnetic Fe3O4. Adv Mater Res 743:183–188

    Article  CAS  Google Scholar 

  43. Fang JM, Sun RC, Tomkinson J, Fowler P (2000) Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system. Carbohydr Polym 41:379–387

    Article  CAS  Google Scholar 

  44. Gupta S, Madan RN, Bansal MC (1987) Chemical composition of Pinus caribaea hemicellulose. Tappi J (USA) 70:113–116

    CAS  Google Scholar 

  45. Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88:547–557

    Article  CAS  Google Scholar 

  46. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  CAS  PubMed  Google Scholar 

  47. Kazayawoko M, Balatinecz JJ, Woodhams RT (1997) Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci 66:1163–1173

    Article  CAS  Google Scholar 

  48. Kazayawoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mater Sci 34:6189–6199

    Article  CAS  Google Scholar 

  49. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036

    Article  CAS  Google Scholar 

  50. Li J, Ji J, **a J, Li B (2012) Preparation of konjac glucomannan-based superabsorbent polymers by frontal polymerization. Carbohydr Polym 87:757–763

    Article  CAS  PubMed  Google Scholar 

  51. Gari VRDK, Kim M (2015) Removal of Pb (II) using silver nanoparticles deposited graphene oxide: equilibrium and kinetic studies. Monatsh Chem 146:1445–1453

    Article  CAS  Google Scholar 

  52. Wang SG, Sun XF, Liu XW, Gong WX, Gao BY, Bao N (2008) Chitosan hydrogel beads for fulvic acid adsorption: behaviors and mechanisms. Chem Eng J 142:239–247

    Article  CAS  Google Scholar 

  53. Wu SJ, Liou TH, Yeh CH, Mi FL, Lin TK (2013) Preparation and characterization of porous chitosan–tripolyphosphate beads for copper(II) ion adsorption. J Appl Polym Sci 127:4573–4580

    Article  CAS  Google Scholar 

  54. Huang Q, Liu M, Zhao J, Chen J, Zeng G, Huang H, Wei Y (2018) Facile preparation of polyethylenimine-tannins coated SiO2 hybrid materials for Cu2+ removal. Appl Surf Sci 427:535–544

    Article  CAS  Google Scholar 

  55. Zhu H, Fu Y, Jiang R, Yao J, **ao L, Zeng G (2014) Optimization of copper(II) adsorption onto novel magnetic calcium alginate/maghemite hydrogel beads using response surface methodology. Ind Eng Chem Res 53:4059–4066

    Article  CAS  Google Scholar 

  56. Dichiara AB, Webber MR, Gorman WR, Rogers RE (2015) Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites. ACS Appl Mater Inter 7:15674–15680

    Article  CAS  Google Scholar 

  57. Wu W, Yang Y, Zhou H, Ye T, Huang Z, Liu R, Kuang Y (2013) Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water Air Soil Poll 224:1–8

    Google Scholar 

  58. Li X, Zhou H, Wu W, Wei S, Xu Y, Kuang Y (2015) Studies of heavy metal ion adsorption on Chitosan/sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397

    Article  CAS  PubMed  Google Scholar 

  59. Chen D, Zhang H, Yang K, Wang H (2016) Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. J Hazard Mater 310:179–187

    Article  CAS  PubMed  Google Scholar 

  60. Jiang T, Liu W, Mao Y, Zhang L, Cheng J, Gong M, Zhao H, Dai L, Zhang S, Zhao Q (2015) Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite. Chem Eng J 259:603–610

    Article  CAS  Google Scholar 

  61. Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Inter 4:4991–5000

    Article  CAS  Google Scholar 

  62. Garcia-Delgado RA, Cotoruelo-Minguez LM, Rodriguez JJ (1992) Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins. Sep Sci Technol 27:975–987

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for XPS test. The authors are grateful the supports by the Science and Technology Planning Project of Shenzhen Municipality (No. KCXFZ20201221173004012) and National College Students Innovation and Entrepreneurship Training Program (202110699137).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Feng Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1798 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, XF., **e, Y., Shan, S. et al. Chemically-Crosslinked Xylan/Graphene Oxide Composite Hydrogel for Copper Ions Removal. J Polym Environ 30, 3999–4013 (2022). https://doi.org/10.1007/s10924-022-02475-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02475-5

Keywords

Navigation