Log in

Synthesis of Biobased Soft-Packaging Polyesters from 2,5 Thiophenedicarboxylic Acid

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Demand for light-packaging materials for food and beverages is on the rise globally, especially in develo** countries where several depend on packaged food. Furthermore, poly(ethylene terephthalate) (PET) a semi-crystalline thermally stable polyester, is widely used for carbonated soft drink, water and juice bottles, but shows a poor degradability properties after their lifespan. In this investigation, a series of novel random partially degradable poly(carbonate-co-esters) (PTB/PTBCn) containing 2,5-thiophenedicarboxylic acid (TDCA), and different amounts of bis(2-hydroxyethoxy)benzene (BHEB) and 1,4-cyclohexanedimethanol (CHDM) sub-units were successfully synthesized via a two-step melt polymerization as a facile and green semi-continuous process. The copolymers were thermally stable with tunable Tg values ranging from 47 to 71 °C, while their 5% decomposition temperature (Td, 5%) under N2 varied from 463 to 432 °C. Herein, focus was made on the synthesis of eco-friendly polyesters with satisfactory O2-gas barrier properties (5.5 cm3 mm/m2 × day × atm) at 25 °C suitable for most packaging applications. The mechanical and thermal analysis of PTB and PTBCn polyesters revealed excellent properties comparable to commonly used packaging materials such as poly(vinyl chloride), poly(lactic acid) and PET, whereby the incorporation of cyclohexane (CHDM) and phenyl (BHEB) rings units greatly enhanced the thermal and mechanical properties, transparency, oxygen permeability, and biodegradability of these polyesters.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The study did not report any additional data. In support of further research, all underlying article materials (such as data, samples or models) can be accessed upon request via email to the corresponding authors.

References

  1. Pellis A, Malinconico M, Guarneri A, Gardossi L (2021) Renewable polymers and plastics: performance beyond the green. New Biotechnol 60:146–158. https://doi.org/10.1016/j.nbt.2020.10.003

    Article  CAS  Google Scholar 

  2. Samak NA, Jia Y, Sharshar MM, Mu T, Yang M, Peh S, **ng J (2020) Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environ Int 145:106144. https://doi.org/10.1016/j.envint.2020.106144

    Article  CAS  PubMed  Google Scholar 

  3. Elvers D, Song CH, Steinbüchel A, Leker J (2016) Technology trends in biodegradable polymers: evidence from patent analysis. Polym Rev 56(4):584–606. https://doi.org/10.1080/15583724.2015.1125918

    Article  CAS  Google Scholar 

  4. Romera-Castillo C, Pinto M, Langer TM, Álvarez-Salgado XA, Herndl GJ (2018) Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun. https://doi.org/10.1038/s41467-018-03798-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pell RS, Wall F, Yan X, Bailey G (2018) Applying and advancing the economic resource scarcity potential (ESP) method for rare earth elements. Resour Policy 62:472–481. https://doi.org/10.1016/j.resourpol.2018.10.003

    Article  Google Scholar 

  6. Djouonkep LDW, Selabi NBS (2021) Synthesis of a bio-based and biodegradable poly(ethylene-co-isosorbide [2,2’-bithiophene]-5,5’- dicarboxylate) with enhanced thermal and degradability properties. Int J Res Sci Innov (IJRSI) 8(10):1–08. https://doi.org/10.51244/IJRSI.2021.81001

    Article  Google Scholar 

  7. Hook M, Davidsson S, Johansson S, Tang X (2013) Decline and depletion rates of oil production: a comprehensive investigation. Philos Trans R Soc A 372(2006):20120448–20120448. https://doi.org/10.1098/rsta.2012.0448

    Article  Google Scholar 

  8. Eneh OC (2011) A review on petroleum: source, uses, processing, products, and the environment. J Appl Sci 11:2084–2091. https://doi.org/10.3923/jas.2011.2084.2091

    Article  Google Scholar 

  9. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  10. Panchal SS, Vasava DV (2020) Biodegradable polymeric materials: synthetic approach. ACS Omega. https://doi.org/10.1021/acsomega.9b04422

    Article  PubMed  PubMed Central  Google Scholar 

  11. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559. https://doi.org/10.1039/C5PY00263J

    Article  CAS  Google Scholar 

  12. **n L, Chao H, Weiguang L, Guanjun C, Lushan W (2020) Insights into the cellulose degradation mechanism of the thermophilic fungus Chaetomium thermophilum based on integrated functional omics. Biotechnol Biofuels 13:143. https://doi.org/10.1186/s13068-020-01783-z

    Article  CAS  Google Scholar 

  13. Siracusa V, Genovese L, Ingrao C, Munari A, Lotti N (2018) Barrier properties of poly(propylene cyclohexanedicarboxylate) random eco-friendly copolyesters. Polymers 10(5):502. https://doi.org/10.3390/polym10050502

    Article  CAS  PubMed Central  Google Scholar 

  14. Papageorgiou GZ, Papageorgiou DG, Terzopoulou Z, Bikiaris DN (2016) Production of bio-based 2,5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur Polym J 83:202–229. https://doi.org/10.1016/j.eurpolymj.2016.08.004

    Article  CAS  Google Scholar 

  15. Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Exarhopoulos S, Papageorgiou M, Bikiaris DN (2014) Evaluation of polyesters from renewable resources as alternatives to the current fossil-based polymers. Phase transitions of poly(butylene 2,5-furan-dicarboxylate). Polymer 55(16):3846–3858. https://doi.org/10.1016/j.polymer.2014.06.025

    Article  CAS  Google Scholar 

  16. **aodong C, **angui Y, Gongying W (2017) Synthesis and characterization of biodegradable multiblock poly(carbonate-co-esters) containing biobased monomer. Polymer 110:87–94

    Article  Google Scholar 

  17. Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int J Biol Macromol 82:1028–1040. https://doi.org/10.1016/j.ijbiomac.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  18. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54(11):3210–3215. https://doi.org/10.1002/anie.201410770

    Article  CAS  Google Scholar 

  19. Chernyshev VM, Kravchenko OA, Ananikov VP (2017) Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russ Chem Rev 86(5):357–387. https://doi.org/10.1070/RCR4700

    Article  CAS  Google Scholar 

  20. Chen C, Wang L, Zhu B, Zhou Z, El-Hout SI, Yang J, Zhang J (2020) 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: catalysts, processes and reaction mechanism. J Energy Chem. https://doi.org/10.1016/j.jechem.2020.05.068

    Article  Google Scholar 

  21. Djouonkep LDW, Zhengzai C, Siegu WMK, **ong J, Jun C, Adom EK, Abubakar M, Gauthier M (2022) High performance sulfur-containing copolyesters from bio-sourced aromatic monomers. Express Polym Lett 16(1):102–114. https://doi.org/10.3144/expresspolymlett.2022.8

    Article  CAS  Google Scholar 

  22. Wang G, Hao X, Jiang M, Wang R, Liang Y, Zhou G (2020) Partially bio-based copolyesters poly(ethylene 2,5-thiophenedicarboxylate-co-ethylene terephthalate): synthesis and properties. Polym Degrad Stab 181:109369. https://doi.org/10.1016/j.polymdegradstab.2020.109369

    Article  CAS  Google Scholar 

  23. Wattananawinrat K, Threepopnatkul P, Kulsetthanchalee C (2014) Morphological and thermal properties of LDPE/EVA blended films and development of antimicrobial activity in food packaging film. Energy Proced 56:1–9. https://doi.org/10.1016/j.egypro.2014.07.125

    Article  CAS  Google Scholar 

  24. Gaikwad KK, Singh S, Lee YS (2018) Oxygen scavenging films in food packaging. Environ Chem Lett 16:523–538. https://doi.org/10.1007/s10311-018-0705-z

    Article  CAS  Google Scholar 

  25. Jones FR (2017) Unsaturated polyester resins. Brydson’s plastics materials. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-323-35824-8.00026-8

    Chapter  Google Scholar 

  26. Pączkowski P, Puszka A, Gawdzik B (2020) Green composites based on unsaturated polyester resin from recycled poly(ethylene terephthalate) with wood flour as filler—synthesis. Charact Aging Effect Polym 12(12):2966. https://doi.org/10.3390/polym12122966

    Article  CAS  Google Scholar 

  27. Kibler CJ, Bell A, Smith JG (1964) Polyesters of 1,4-cyclohexanedimethanol1. J Polym Sci A 2(5):2115–2125. https://doi.org/10.1002/pol.1964.100020508

    Article  CAS  Google Scholar 

  28. Diao L, Su K, Li Z, Ding C (2016) Furan-based co-polyesters with enhanced thermal properties: poly(1,4-butylene-co-1,4-cyclohexanedimethylene-2,5-furandicarboxylic acid). RSC Adv 6(33):27632–27639. https://doi.org/10.1039/C5RA27617A

    Article  CAS  Google Scholar 

  29. Hahm S, Kim J-S, Yun H, Park JH, Letteri RA, Kim BJ (2019) Bench-scale synthesis and characterization of biodegradable aliphatic-aromatic random copolymers with 1,4-cyclohexanedimethanol units towards sustainable packaging applications. ACS Sustain Chem Eng 7(5):4734–4743. https://doi.org/10.1021/acssuschemeng.8b04720

    Article  CAS  Google Scholar 

  30. Fabbri M, Soccio M, Gigli M, Guidotti G, Gamberini R, Gazzano M, Munari A (2016) Design of fully aliphatic multiblock poly(ester urethane)s displaying thermoplastic elastomeric properties. Polymer 83:154–161. https://doi.org/10.1016/j.polymer.2015.12.022

    Article  CAS  Google Scholar 

  31. Gigli M, Lotti N, Siracusa V, Gazzano M, Munari A, Dalla RM (2016) Effect of molecular architecture and chemical structure on solid-state and barrier properties of heteroatom-containing aliphatic polyesters. Eur Polym J 78:314–325. https://doi.org/10.1016/j.eurpolymj.2016.03.043

    Article  CAS  Google Scholar 

  32. Gigli M, Lotti N, Gazzano M, Siracusa V, Finelli L, Munari A, Rosa MD (2014) Biodegradable aliphatic copolyesters containing PEG-like sequences for sustainable food packaging applications. Polym Degrad Stab 105:96–106. https://doi.org/10.1016/j.polymdegradstab.2014.04.006

    Article  CAS  Google Scholar 

  33. McKeen LW (2013) Introduction to use of plastics in food packaging. Plastic films in food packaging. Elsevier, Amsterdam. https://doi.org/10.1016/B978-1-4557-3112-1.00001-6

    Chapter  Google Scholar 

  34. Gigli M, Lotti N, Gazzano M, Finelli L, Munari A (2012) Macromolecular design of novel sulfur-containing copolyesters with promising mechanical properties. J Appl Polym Sci 126(2):686–696. https://doi.org/10.1002/app.36856

    Article  CAS  Google Scholar 

  35. Lecomte HA, Liggat JJ, Curtis ASG (2006) Synthesis and characterization of novel biodegradable aliphatic poly(ester amide)s containing cyclohexane units. J Polym Sci A 44(6):1785–1795. https://doi.org/10.1002/pola.21288

    Article  CAS  Google Scholar 

  36. Berti C, Celli A, Marchese P, Marianucci E, Barbiroli G, Di Credico F (2008) Macromol. Chem. Phys. 13/2008. Macromol Chem Phys. https://doi.org/10.1002/macp.200890023

    Article  Google Scholar 

  37. Folarin OM, Sadiku ER (2011) Thermal stabilizers for poly(vinyl chloride): a review. Int J Phys Sci 6(18):4323–4330. https://doi.org/10.5897/IJPS11.654

    Article  Google Scholar 

  38. Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manage 48:300–314. https://doi.org/10.1016/j.wasman.2015.11.041

    Article  CAS  Google Scholar 

  39. Zhao Q, Ding Y, Yang B, Ning N, Fu Q (2013) Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA). Polym Testing 32(2):299–305. https://doi.org/10.1016/j.polymertesting.2012.11.012

    Article  CAS  Google Scholar 

  40. Singh RK, Ruj B, Sadhukhan AK, Gupta P (2019) A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions. J Energy Inst 93(3):1020–1035. https://doi.org/10.1016/j.joei.2019.09.003

    Article  CAS  Google Scholar 

  41. Han NK, Daesun P, Je Sung Y, Bookyeong J, Jeong CK (2019) Effect of dimethyl 1,4-cyclohexane dicarboxylate on mechanical properties and crystallization behavior of polytrimethylene terephthalate co-polymer. Macromol Res 27:182–190. https://doi.org/10.1007/s13233-019-7049-9

    Article  CAS  Google Scholar 

  42. Ameer AA, Mustafa SA, Ahmed AA, Emad AY (2013) Synthesis and characterization of polyvinyl chloride chemically modified by amines. Open J Polym Chem 3:11–15. https://doi.org/10.4236/ojpchem.2013.31003

    Article  CAS  Google Scholar 

  43. Wolanov Y, Feldman AY, Harel H, Marom G (2009) Amorphous and crystalline phase interaction during the Brill transition in nylon 66. Express Polym Lett 3(7):452–457. https://doi.org/10.3144/expresspolymlett.2009.55

    Article  CAS  Google Scholar 

  44. Zhao P, Liu W, Wu Q, Ren J (2010) Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic acid) blends. J Nanomater. https://doi.org/10.1155/2010/287082

    Article  Google Scholar 

  45. Rostam S, Ali AK, AbdalMuhammad FH (2016) Experimental investigation of mechanical properties of PVC polymer under different heating and cooling conditions. J Eng. https://doi.org/10.1155/2016/3791417

    Article  Google Scholar 

  46. Latko-Durałek P, Dydek K, Boczkowska A (2019) Thermal, rheological and mechanical properties of PETG/rPETG blends. J Polym Environ 27:2600–2606. https://doi.org/10.1007/s10924-019-01544-6

    Article  CAS  Google Scholar 

  47. Helanto K, Matikainen L, Talja R, Rojas OJ (2019) Bio-based polymers for sustainable packaging and biobarriers: a critical review. BioResources 14(2):4902–4951

    Google Scholar 

  48. Cheng S, Khan B, Khan F, Rabnawaz M (2018) Synthesis of high molecular weight polyester using in situ drying method and assessment of water vapor and oxygen barrier properties. Polymers 10(10):1113. https://doi.org/10.3390/polym10101113

    Article  CAS  PubMed Central  Google Scholar 

  49. Muller J, González-Martínez C, Chiralt A (2017) Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 10(8):952. https://doi.org/10.3390/ma10080952

    Article  CAS  PubMed Central  Google Scholar 

  50. Abdul M, Anupam GL, Antony AJ, Ramis MK (2017) An experimental study on the thermal properties and electrical properties of polylactide doped with nano aluminium oxide and nano cupric oxide. INAE Lett 2:145–151. https://doi.org/10.1007/s41403-017-0030-z

    Article  Google Scholar 

  51. Michiels Y, Puyvelde P, Sels B (2017) Barriers and chemistry in a bottle: mechanisms in today’s oxygen barriers for tomorrow’s materials. Appl Sci 7(7):665. https://doi.org/10.3390/app7070665

    Article  CAS  Google Scholar 

  52. Molnár J, Sepsi Ö, Erdei G, Lenk S, Ujhelyi F, Menyhárd A (2020) Modeling of light scattering and haze in semicrystalline polymers. J Polym Sci 58(13):1787–1795. https://doi.org/10.1002/pol.20200027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Program (BG20190227001) of High-end Foreign Experts of the Sate. Administration of Foreign Experts Affairs (SAFEA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lesly Dasilva Wandji Djouonkep or Zhengzai Cheng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siegu, W.M.K., Djouonkep, L.D.W., Adom, E.K. et al. Synthesis of Biobased Soft-Packaging Polyesters from 2,5 Thiophenedicarboxylic Acid. J Polym Environ 30, 2435–2447 (2022). https://doi.org/10.1007/s10924-022-02373-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02373-w

Keywords

Navigation