Log in

A Novel Microwave Sensor to Detect Specific Biomarkers in Human Cerebrospinal Fluid and Their Relationship to Cellular Ischemia During Thoracoabdominal Aortic Aneurysm Repair

  • Non-invasive Diagnostic Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Thoraco-abdominal aneurysms (TAAA) represents a particularly lethal vascular disease that without surgical repair carries a dismal prognosis. However, there is an inherent risk from surgical repair of spinal cord ischaemia that can result in paraplegia. One method of reducing this risk is cerebrospinal fluid (CSF) drainage. We believe that the CSF contains clinically significant biomarkers that can indicate impending spinal cord ischaemia. This work therefore presents a novel measurement method for proteins, namely albumin, as a precursor to further work in this area. The work uses an interdigitated electrode (IDE) sensor and shows that it is capable of detecting various concentrations of albumin (from 0 to 100 g/L) with a high degree of repeatability at 200 MHz (R2 = 0.991) and 4 GHz (R2 = 0.975).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frederick, J., and Woo, Y., Thoracoabdominal aortic aneurysm. Ann. Cardiothorac. Surg. 1(3):277–285, 2012. doi:10.3978/j.issn. 2225-319X.2012.09.01.

    Google Scholar 

  2. Bashir, M., Fok, M., Hammoud, I., Rimmer, L., Shaw, M., Field, M., et al., A perspective on natural history and survival in nonoperated thoracic aortic aneurysm patients. Aorta. 1(3):182–189, 2013. doi:10.12945/j.aorta.2013.13-043.

    Article  Google Scholar 

  3. Perko, M. J., Nørgaard, M., Herzog, T. M., Olsen, P. S., Schroeder, T. V., and Pettersson, G., Unoperated aortic aneurysm: a survey of 170 patients. Ann. Thorac. Surg. 59:1204–1209, 1995. doi:10.1016/0003-4975(95)00132-5.

    Article  Google Scholar 

  4. Achneck, H. E., Rizzo, J. A., Tranquilli, M., and Elefteriades, J. A., Safety of thoracic aortic surgery in the present era. Ann. Thorac. Surg. 84(4):1180–1185, 2007.

    Article  Google Scholar 

  5. Coselli, J. S., Lemaire, S. A., Koksoy, C., Schmittling, Z. C., and Curling, P. E., Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. Vasc. Surg. 35:631–639, 2002.

    Article  Google Scholar 

  6. McGarvey, M. L., Cheung, A. T., Szeto, W., and Messe, S. R., Management of neurologic complications of thoracic aortic surgery. J. Clin. Neurophysiol. 24:336–343, 2007.

    Google Scholar 

  7. Gelman, S., The pathophysiology of aortic cross-clam** and unclam**. Anesthesiology 82:1026–1057, 1995.

    Article  Google Scholar 

  8. Lintott, P., Hafez, H. M., and Stansby, G. P., Spinal cord complications of thoracoabdominal aneurysm surgery. Br. J. Surg. 85:5–15, 1998.

    Article  Google Scholar 

  9. Coselli, J. S., Bozinovski, J., and LeMaire, S. A., Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann. Thorac. Surg. 83:S862–S864, 2007.

    Article  Google Scholar 

  10. Frederick, J. R., and Woo, Y. J., Thoracoabdominal aortic aneurysm. Ann. Cardiothorac. Surg. 1(3):277–285, 2012. doi:10.3978/j.issn. 2225-319X.2012.09.01.

    Google Scholar 

  11. Augoustides, J. G., Floyd, T. F., McGarvey, M. L., et al., Major clinical outcomes in adults undergoing thoracic aortic surgery requiring deep hypothermic circulatory arrest: quantification of organ-based perioperative outcome and detection of opportunities for perioperative intervention. J. Cardiothorac. Vasc. Anesth. 19:446–452, 2005. doi:10.1053/j.jvca.2005.05.004.

    Article  Google Scholar 

  12. Ziganshin, B. A., and Elefteriades, J. A., Deep hypothermic circulatory arrest. Ann. Cardiothorac. Surg. 2(3):303–315, 2013.

    Google Scholar 

  13. Lancaster, R. T., Conrad, M. F., Patel, V. I., et al., Further experience with distal aortic perfusion and motor-evoked potential monitoring in the management of extent I-III thoracoabdominal aortic anuerysms. J. Vasc. Surg. 58:283–290, 2013.

    Article  Google Scholar 

  14. Estrera, A. L., Sheinbaum, R., Miller, C. C., 3rd, et al., Neuromonitor-guided repair of thoracoabdominal aortic aneurysms. J. Thorac. Cardiovasc. Surg. 140:S131–S135, 2010.

    Article  Google Scholar 

  15. Kawanishi, Y., Munakata, H., Matsumori, M., et al., Usefulness of transcranial motor evoked potentials during thoracoabdominal aortic surgery. Ann. Thorac. Surg. 83:456–461, 2007.

    Article  Google Scholar 

  16. Safi, H. J., Miller Iii, C. C., Carr, C., et al., Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J. Vasc. Surg. 27(1):58–68, 1998. doi:10.1016/S0741-5214(98)70292-7.

    Article  Google Scholar 

  17. Khan, S. N., and Stansby, G., Cerebrospinal fluid drainage for thoracic and thoracoabdominal aortic aneurysm surgery. Cochrane Database Syst. Rev., 2004.

  18. Cina, C. S., Abouzahr, L., Arena, G. O., et al., Cerebrospinal fluid drainage to prevent paraplegia during thoracic and thoracoabdominal aortic aneurysm surgery: a systematic review and meta-analysis. J. Vasc. Surg. 40:36–44, 2004.

    Article  Google Scholar 

  19. Goh, J. H., Mason, A., Al-Shamma’a, A. I., et al., Lactate detection using microwave spectroscopy for in-situ medical applications. Int. J. Smart Sens. Intell. Syst. 4:338–352, 2011.

    Google Scholar 

  20. Goh, J. H, Mason, A., Al-Shamma’a A. I., et al., Lactate detection using a microwave cavity sensor for biomedical applications. Proc. 46th Annual Microwave Power Symposium (IMPI 46).32–39. Las Vegas, USA, 2012.

  21. Korostynska, O., Blakey, R., Mason, A., et al., Novel method for vegetable oil type verification based on real-time microwave sensing. Sensors Actuators A Phys. 202:211–216, 2013. doi:10.1016/j.sna.2012.12.011.

    Article  Google Scholar 

  22. Blakey, R., Korostynska, O., Mason, A., et al., Real-time microwave based sensing method for vegetable oil type verification. Procedia Eng. 47:623–626, 2012.

    Article  Google Scholar 

  23. Mason, A., Korostynska, O., Ortoneda-Pedrola, M., et al., A resonant co-planar sensor at microwave frequencies for biomedical applications. Sensors Actuators A Phys. 202:170–175, 2013. doi:10.1016/j.sna.2013.04.015.

    Article  Google Scholar 

  24. Drenger, B., Parker, S. D., Frank, S. M., et al., Changes in cerebrospinal fluid pressure and lactate concentrations during thoracoabdominal aortic aneurysm surgery. Anesthesiology 86(1):41–47, 1997.

    Article  Google Scholar 

  25. Rothermundt, M., Peters, M., Prehn, J. H., et al., S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 60(6):614–632, 2003.

    Article  Google Scholar 

  26. Marquardt, G., Setzer, M., Theisen, A., et al., Experimental subacute spinal cord compression: correlation of serial S100B and NSE serum measurements, histopathological changes, and outcome. Neurol. Res. 33(4):421–426, 2011.

    Article  Google Scholar 

  27. Marquardt, G., Setzer, M., Szelenyi, A., et al., Prognostic relevance of serial S100b and NSE serum measurements in patients with spinal intradural lesions. Neurol. Res. 31(3):265–269, 2009.

    Article  Google Scholar 

  28. Khaladj, N., Teebken, O. E., Hagl, C., et al., The role of cerebrospinal fluid S100 and lactate to predict clinically evident spinal cord ischaemia in thoraco-abdominal aortic surgery. Eur. J. Vasc. Endovasc. Surg. 36(1):11–19, 2008.

    Article  Google Scholar 

  29. Anderson, R. E., Winnerkvist, A., Hansson, L. O., et al., Biochemical markers of cerebrospinal ischemia after repair of aneurysms of the descending and thoracoabdominal aorta. J. Cardiothorac. Vasc. Anesth. 17(5):598–603, 2003.

    Article  Google Scholar 

  30. Winnerkvist, A., Anderson, R. E., Hansson, L. O., et al., Multilevel somatosensory evoked potentials and cerebrospinal proteins: indicators of spinal cord injury in thoracoabdominal aortic aneurysm surgery. Eur. J. Cardiothorac. Surg. 31(4):637–642, 2007.

    Article  Google Scholar 

  31. Casiraghi, G., Poli, D., Landoni, G., et al., Intrathecal lactate concentration and spinal cord injury in thoracoabdominal aortic surgery. J. Cardiothorac. Vasc. Anesth. 25(1):120–126, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mason.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fok, M., Bashir, M., Fraser, H. et al. A Novel Microwave Sensor to Detect Specific Biomarkers in Human Cerebrospinal Fluid and Their Relationship to Cellular Ischemia During Thoracoabdominal Aortic Aneurysm Repair. J Med Syst 39, 37 (2015). https://doi.org/10.1007/s10916-015-0208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0208-4

Keywords

Navigation