Log in

Discrete-Velocity-Direction Models of BGK-Type with Minimum Entropy: II—Weighted Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this series of works, we develop a discrete-velocity-direction model (DVDM) with collisions of BGK-type for simulating gas flows, where the molecular motion is confined to some prescribed directions but the speed is still a continuous variable in each orientation. In this article, we introduce a weighted function in each orientation when recovering the macroscopic parameters. Moreover, the internal molecular degrees of freedom are considered. With this weighted DVDM, we develop three submodels by incorporating the discrete velocity method, the Gaussian-extended quadrature method of moments and the Hermite spectral method in each direction. These spatial-time submodels are novel multidimensional versions corresponding to the three approaches. Numerical tests with a series of 1-D and 2-D flow problems show the efficiency of the weighted DVDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data in this article are available from the corresponding author upon reasonable request.

References

  1. Bahukudumbi, P., Park, J.H., Beskok, A.: A unified engineering model for steady and quasi-steady shear-driven gas microflows. Microscale Thermophys. Eng. 7, 291–315 (2003)

    Google Scholar 

  2. Bellomo, N., Burini, D., Dosi, G., Gibelli, L., Knopoff, D., Outada, N., Terna, P., Virgillito, M.-E.: What is life? A perspective of the mathematical kinetic theory of active particles. Math. Models Methods Appl. Sci. 31, 1821–1866 (2021)

    MathSciNet  Google Scholar 

  3. Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Google Scholar 

  4. Broyden, C.: The convergence of a class of double-rank minimization algorithms. IMA J. Appl. Math. 6, 76–90 (1970)

    Google Scholar 

  5. Chalons, C., Fox, R., Laurent, F., Massot, M., Vié, A.: Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow. Multiscale Model. Simul. 15, 1553–1583 (2017)

    MathSciNet  Google Scholar 

  6. Chu, C.-K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12–22 (1965)

    Google Scholar 

  7. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)

    MathSciNet  Google Scholar 

  8. Fei, F., Jenny, P.: A hybrid particle approach based on the unified stochastic particle Bhatnagar–Gross–Krook and DSMC methods. J. Comput. Phys. 424, 109858 (2021)

    MathSciNet  Google Scholar 

  9. Fiveland, W.A.: Discrete ordinate methods for radiative heat transfer in isotropically and anisotropically scattering media. J. Heat Transf. 109, 809–812 (1987)

    Google Scholar 

  10. Fox, R.: A quadrature-based third-order moment method for dilute gas-particle flows. J. Comput. Phys. 227, 6313–6350 (2008)

    MathSciNet  Google Scholar 

  11. Friedlander, S.: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edn. Oxford University Press, Oxford (2000)

    Google Scholar 

  12. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Google Scholar 

  13. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    MathSciNet  Google Scholar 

  14. Guo, Z., Xu, K., Wang, R.: Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case. Phys. Rev. E 88, 033305 (2013)

    Google Scholar 

  15. Guo, Z., Wang, R., Xu, K.: Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case. Phys. Rev. E 91, 033313 (2015)

    Google Scholar 

  16. Harris, S.: An Introduction to the Theory of the Boltzmann Equation. Dover Publications, New York (2004)

    Google Scholar 

  17. Harten, A., Lax, P., Vanleer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1982)

    MathSciNet  Google Scholar 

  18. Holway, L.H.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966)

    Google Scholar 

  19. Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.C.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118, 329–347 (1995)

    Google Scholar 

  20. Hu, Z., Cai, Z., Wang, Y.: Numerical simulation of microflows using Hermite spectral methods. SIAM J. Sci. Comput. 42, B105–B134 (2020)

    MathSciNet  Google Scholar 

  21. Huang, Q., Li, S., Li, G., Yao, Q.: Mechanisms on the size partitioning of sodium in particulate matter from pulverized coal combustion. Combust. Flame 182, 313–323 (2017)

    Google Scholar 

  22. Huang, Q., Li, S.Q., Yong, W.-A.: Stability analysis of quadrature-based moment methods for kinetic equations. SIAM J. Appl. Math. 80, 206–231 (2020)

    MathSciNet  Google Scholar 

  23. Huang, Q., Chen, Y., Yong, W.-A.: Discrete-velocity-direction models of BGK-type with minimum entropy: I. Basic idea. J. Sci. Comput. 95, 80 (2023)

    MathSciNet  Google Scholar 

  24. John, B., Gu, X.-J., Emerson, D.: Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions. Numer. Heat Transf. Part B: Fundam. 58, 287–303 (2010)

    Google Scholar 

  25. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method: Principles and Practice. Springer, Berlin (2017)

    Google Scholar 

  26. Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)

    MathSciNet  Google Scholar 

  27. Lallemand, P., Luo, L.-S., Krafczyk, M., Yong, W.-A.: The lattice Boltzmann method for nearly incompressible flows. J. Comput. Phys. 431, 109713 (2021)

    MathSciNet  Google Scholar 

  28. Lathrop, K.D., Carlson, B.G.: Discrete Ordinates Angular Quadrature of the Neutron Transport Equation. Los Alamos Scientific Laboratory LA-3186 (1965)

  29. Lax, P.D., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    MathSciNet  Google Scholar 

  30. Leopardi, P.: A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. Numer. Anal. 25, 309–327 (2006)

    MathSciNet  Google Scholar 

  31. Lora-Clavijo, F.D., Cruz-Pérez, J.P., Guzmán, F.S., González, J.A.: Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics. Revista Mexicana de Física E 59, 28–50 (2013)

    MathSciNet  Google Scholar 

  32. Marchisio, D., Fox, R.: Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  33. Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10, 1121–1149 (2000)

    MathSciNet  Google Scholar 

  34. Mieussens, L.: Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466 (2000)

    MathSciNet  Google Scholar 

  35. Morris, A.B., Goldstein, D.B., Varghese, P.L., Trafton, L.M.: Plume im**ement on a dusty lunar surface. AIP Conf. Proc. 1333, 1187–1192 (2011)

    Google Scholar 

  36. Naris, S., Valougeorgis, D.: The driven cavity flow over the whole range of the Knudsen number. Phys. Fluids 17, 097106 (2005)

    Google Scholar 

  37. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  Google Scholar 

  38. Perthame, B.: Global existence to the BGK model of Boltzmann equation. J. Differ. Equ. 82, 191–205 (1989)

    MathSciNet  Google Scholar 

  39. Phillips, W.F.: Drag on a small sphere moving through a gas. Phys. Fluids 18, 1089–1093 (1975)

    Google Scholar 

  40. Shakhov, E.M.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3, 95–96 (1968)

    MathSciNet  Google Scholar 

  41. Sharipov, F.: Rarefied gas dynamics and its applications to vacuum technology. CAS - CERN Accelerator School: Vacuum in Accelerators, pp. 1–14 (2007). https://doi.org/10.5170/CERN-2007-003.1

  42. Sharipov, F.: Rarefied Gas Dynamics: Fundamentals for Research and Practice. Wiley-VCH, Weinheim (2016)

    Google Scholar 

  43. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701–762 (2020)

    MathSciNet  Google Scholar 

  44. Thurgood, C., Pollard, A., Becker, H.A.: The \(T_N\) quadrature set for the discrete ordinates method. J. Heat Transf. 117, 1068–1070 (1995)

    Google Scholar 

  45. Welander, P.: On the temperature jump in a rarefied gas. Arkiv. Fysik. 7, 507–553 (1954)

    MathSciNet  Google Scholar 

  46. Yamaleev, N.K., Carpenter, M.H.: Third-order energy stable WENO scheme. J. Comput. Phys. 228, 3025–3047 (2009)

    MathSciNet  Google Scholar 

  47. Zhang, Z., Xu, J., Qi, Z., **, G.: A discrete velocity direction model for the Boltzmann equation and applications to micro gas flows. J. Comput. Phys. 227, 5256–5271 (2008)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant No. 2021YFA0719200) and the National Natural Science Foundation of China (Grant Nos. 51906122 and 12071246).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, Q. & Yong, WA. Discrete-Velocity-Direction Models of BGK-Type with Minimum Entropy: II—Weighted Models. J Sci Comput 99, 84 (2024). https://doi.org/10.1007/s10915-024-02531-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02531-3

Keywords

Mathematics Subject Classification

Navigation