Log in

A Priori and a Posteriori Error Analysis of TDNNS Method for Linear Elasticity Problem Under Minimal Regularity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a priori and a posteriori error estimates of the tangential-displacement normal-normal-stress (TDNNS) method for linear elasticity problem with strongly symmetric stress tensors are proposed. The error estimator is established by decomposing the stress error into two components via the introduction of an auxiliary problem. The local efficiency of the error estimator is proved via bubble function techniques. Then, we derive a priori error estimates under minimal regularity. Classical methodologies rely on Galerkin orthogonality, which hinges on the well-defined trace variables on the inter-element boundaries. In order to circumvent the Galerkin orthogonality, an alternative methodology in the spirit of the medius analysis is established to prove the convergence error estimates for \(L^2\)-error of stress, mesh-dependent energy error of displacement and \(L^2\)-error of displacement. Several numerical experiments are presented to verify the performances of the proposed error estimator and confirm the convergence error estimates of the method especially for problems with low regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Achdou, Y., Bernardi, C., Coquel, F.: A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96, 17–42 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Alberty, J., Carstensen, C., Funken, S.A., Klose, R.: Matlab implementation of the finite element method in elasticity. Computing 69, 239–263 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element for plane elasticity. Japan J. Appl Math. 1, 347–367 (1984)

    MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76, 1699–1723 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Arnold, D.N., Winther, R.: Nonconforming mixed elements for elasticity. Math. Models Meth. Appl. Sci. 13, 295–307 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Badia, S., Codina, R., Gudi, T., Guzmán, J.: Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity. IMA J. Numer. Anal. 34, 800–819 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Barrios, T.P., Gatica, G.N., González, M., Heuer, N.: A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity. ESAIM-Math. Model. Numer. Anal. 40, 843–869 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Bertrand, F., Kober, B., Moldenhauer, M., Starke, G.: Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity. Numer. Meth. Part Differ. Equ. 37, 2783–2802 (2021)

    MathSciNet  Google Scholar 

  10. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal. 8, 95–121 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Braess, D., Klaas, O., Niekamp, R., Stein, E., Wobschal, F.: Error indicators for mixed finite elements in 2-dimensional linear elasticity. Comput. Methods Appl. Mech. Engrg. 127, 345–356 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Bramwell, J., Demkowicz, L., Gopalakrishnan, J., Qiu, W.: A locking-free \(hp\) DPG method for linear elasticity with symmetric stresses. Numer. Math. 122, 671–707 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise \({H}^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C.: Korn’s inequalities for piecewise \({H}^1\) vector fields. Math. Comp. 73, 1067–1087 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, London (2008)

    MATH  Google Scholar 

  16. Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Math. Comp. 76, 1119–1140 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Cai, Z., Ye, X.: A mixed nonconforming finite element for linear elasticity. Numer. Meth. Part Differ. Equ. 21, 1043–1051 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Carstensen, C., Gallistl, D., Schedensack, M.: \(L^2\) best approximation of the elastic stress in the Arnold-Winther FEM. IMA J. Numer. Anal. 36, 1096–1119 (2015)

    MATH  Google Scholar 

  19. Carstensen, C., Gedicke, J.: Robust residual-based a posteriori Arnold-Winther mixed finite element analysis in elasticity. Comput. Methods Appl. Mech. Engrg. 300, 245–264 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50, 2803–2823 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Cockburn, B., Fu, G.: Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decompositions. IMA J. Numer. Anal. 38, 566–604 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79, 1331–1349 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Ern, A., Guermond, J..-L.: Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51, 1367–1385 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Ern, A., Guermond, J.-L.: Finite Elements I: Approximation and Interpolation. Springer Cham, Switzerland (2021)

    MATH  Google Scholar 

  26. Ern, A., Guermond, J.-L.: Quasi-optimal nonconforming approximation of elliptic pdes with contrasted coefficients and \({H}^{1+r}, r>0\), regularity. Found. Comput. Math. 22, 1273–1308 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Fu, G., Cockburn, B., Stolarski, H.: Analysis of an HDG method for linear elasticity. Internat. J. Numer. Methods Engrg. 102, 551–575 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71, 585–614 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Gopalakrishnan, J., Guzmán, J.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49, 1504–1520 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Grisvard, P.: Elliptic problems in nonsmooth domains. Soc. Indust. Appl. Math. 35, 74 (2011)

    MATH  Google Scholar 

  31. Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79, 2169–2189 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Gudi, T.: Some nonstandard error analysis of discontinuous Galerkin methods for elliptic problems. Calcolo 47, 239–261 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Hu, J.: Finite element approximations of symmetric tensors on simplicial grids in \(\mathbb{R} ^n\): The higher order case. J. Comput. Math. 33, 283–296 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Kim, K.-Y.: Guaranteed a posteriori error estimator for mixed finite element methods of linear elasticity with weak stress symmetry. SIAM J. Numer. Anal. 49, 2364–2385 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Lee, J.J.: Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress. Adv. Comput. Math. 42, 361–376 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Lee, J.J., Kim, H.H.: Analysis of a staggered discontinuous Galerkin method for linear elasticity. J. Sci. Comput. 66, 625–649 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Lonsing, M., Verfürth, R.: A posteriori error estimators for mixed finite element methods in linear elasticity. Numer. Math. 97, 757–778 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  40. Pechstein, A., Schöberl, J.: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 21, 1761–1782 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Pechstein, A., Schöberl, J.: Anisotropic mixed finite elements for elasticity. Int. J. Numer. Meth. Eng. 90, 196–217 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Pechstein, A., Schöberl, J.: An analysis of the TDNNS method using natural norms. Numer. Math. 139, 93–120 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Qiu, W., Demkowicz, L.: Mixed hp-finite element method for linear elasticity with weakly imposed symmetry: Stability analysis. SIAM J. Nume. Anal. 49, 619–641 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)

    MathSciNet  MATH  Google Scholar 

  45. Verfürth, R.: A posteriori error estimates for nonlinear problems. finite element discretizations of elliptic equations. Math. Comp. 62, 445–475 (1994)

    MathSciNet  MATH  Google Scholar 

  46. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)

    MathSciNet  MATH  Google Scholar 

  47. Wu, S., Gong, S., Xu, J.: Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor. Math. Models Meth. Appl. Sci. 27, 2711–2743 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Zhao, L., Park, E.-J.: A staggered cell-centered DG method for linear elasticity on polygonal meshes. SIAM J. Sci. Comput. 42, A2158–A2181 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Zhao.

Ethics declarations

Data Availability

Enquiries about data availability should be directed to the authors.

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Lina Zhao was supported by a grant from City University of Hong Kong (Project No. 7200699).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L. A Priori and a Posteriori Error Analysis of TDNNS Method for Linear Elasticity Problem Under Minimal Regularity. J Sci Comput 95, 81 (2023). https://doi.org/10.1007/s10915-023-02213-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02213-6

Keywords

Navigation