Log in

A New Method using \(C^0\)IPG for the Biharmonic Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The paper presents a new proof of the \(C^0\)IPG method (\(C^0\) interior penalty Galerkin method) for the biharmonic eigenvalue problem. Instead of using the proof following the structure of discontinuous Galerkin method, we rewrite the problem as the eigenvalue problem of a holomorphic Fredholm operator function of index zero. The convergence for \(C^0\)IPG is proved using the abstract approximation theory for holomorphic operator functions. We employ the spectral indicator method which is easy in coding to compute the eigenvalues. Numerical examples are presented to validate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  Google Scholar 

  2. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72, 701–709 (1968)

    Google Scholar 

  3. Babuška, I., Osborn, J.: Eigenvalue problems, Handbook of numerical analysis, Vol. II, Finite Element Methods (Part 1), Edited by Ciarlet, P.G., Lions, J.L. Elseveier Science Publishers B.V. (North-Holland), (1991)

  4. Beyn, W., Latushkin, Y., Rottmann-Matthes, J.: Finding eigenvalues of holomorphic Fredholm operator pencils using boundary value problems and contour integrals. Integral Equ. Op. Theor. 78, 155–211 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bjrstad, P.E., Tjstheim, B.P.: High precision solution of two fourth order eigenvalue problems. Computing 63, 97–107 (1999)

    Article  MathSciNet  Google Scholar 

  6. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.: \(C^0\) interior penalty methods, in Frontiers in Numerical Analysis - Durham 2010, 79-147, Lecture Notes in Computational Science and Engineering 85, Springer-Verlag, (2012)

  8. Brenner, S.C., Sung, L.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)

    Article  MathSciNet  Google Scholar 

  9. Brenner, S.C., Monk, P.B., Sun, J.: \(C^0\) IPG method for biharmonic eigenvalue problems, spectral and high order methods for partial differential equations. Lect. Notes Comput. Sci. Eng. 106, 3–15 (2015)

    Article  Google Scholar 

  10. Chen, W., Lin, Q.: Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet-Raviart scheme. Adv. Comput. Math. 27, 95–106 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ciarlet, P.G.: The finite element method for elliptic problems, classics in applied mathematics. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  12. Davis, C.B.: A partition of unity method with penalty for fourth order problems. J. Sci. Comput. 60, 228–248 (2014)

    Article  MathSciNet  Google Scholar 

  13. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Engrg. 191, 3669–3750 (2002)

    Article  MathSciNet  Google Scholar 

  14. Gallistl, D.: Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35, 1779–1811 (2014)

    Article  MathSciNet  Google Scholar 

  15. Georgoulis, E., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29, 573–594 (2009)

    Article  MathSciNet  Google Scholar 

  16. Gohberg, I., Leiterer, J.: Holomorphic operator functions of one variable and applications, vol. 192. Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

  17. Gong, B., Sun, J., Turner, T., Zheng, C.: Finite element approximation of the nonlinear transmission eigenvalue problem for anisotropic media, (2019), ar**v:2001.05340

  18. Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  19. Jia, S., **e, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer. Meth. Part. D. E. 24, 435–448 (2008)

    Article  MathSciNet  Google Scholar 

  20. Karma, O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17(3–4), 365–387 (1996)

    Article  MathSciNet  Google Scholar 

  21. Karma, O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. (Convergence rate). Numer. Funct. Anal. Optim. 17(3–4), 389–408 (1996)

    Article  MathSciNet  Google Scholar 

  22. Morley, L.: The triangular equilibrium problem in the solution of plate bending problems. Aero. Quart. 19, 149–169 (1968)

    Article  Google Scholar 

  23. Perugia, I., Schötzau, D.: An \(hp\)-analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comp. 17, 561–571 (2002)

    Article  MathSciNet  Google Scholar 

  24. Mora, D., Rodriguez, R.: A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comput. 78, 1891–1917 (2009)

    Article  MathSciNet  Google Scholar 

  25. Sun, J.: A new family of high regularity elements. Numer. Meth. Part. D. E. 28, 1–16 (2012)

    Article  MathSciNet  Google Scholar 

  26. Sun, J., Zhou, A.: Finite element methods for eigenvalue problem. CRC Press, New York (2016)

    Book  Google Scholar 

  27. Wieners, C.: Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59, 29–41 (1997)

    Article  MathSciNet  Google Scholar 

  28. **ao, W., Gong, B., Sun, J., Zhang, Z.: A new finite element approach for the Dirichlet eigenvalue problem. Appl. Math. Lett. 105, 106295 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Y. ** is supported in part by the National Natural Science Foundation of China with Grant No.11901295, Natural Science Foundation of Jiangsu Province under BK20190431. The research of X. Ji is partially supported by the National Natural Science Foundation of China with Grant Nos.11971468, Bei**g Natural Science Foundation Z200003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **a Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, Y., Ji, X. A New Method using \(C^0\)IPG for the Biharmonic Eigenvalue Problem. J Sci Comput 90, 81 (2022). https://doi.org/10.1007/s10915-022-01762-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01762-6

Keywords

Mathematics Subject Classification

Navigation