Log in

An Efficient Low-Dissipation High-Order TENO Scheme for MHD Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an efficient low-dissipation high-order TENO scheme is proposed for ideal MHD flows. For high computational efficiency, a troubled-cell indicator based on the ENO-like stencil selection strategy in TENO schemes is introduced to isolate the discontinuities from smooth regions. While the high-order linear scheme is adopted for the smooth regions, a low-dissipation TENO scheme is applied for capturing discontinuities detected by the troubled-cell indicator. The case-independent parameters are given based on spectral analysis. Both the governing equations of the ideal MHD and the Hamilton–Jacobi type constrained transport equation for divergence-free condition can be solved by the newly proposed scheme. Since most computational regions are resolved by the linear scheme without expensive characteristic decomposition, flux splitting and nonlinear weight calculation, the proposed scheme is highly efficient. A set of benchmark cases has been simulated to demonstrate the performance of the proposed scheme. Numerical results reveal that remarkable speedup is achieved by the present scheme while the oscillation-free property and the high-order accuracy are preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405–406 (1942)

    Article  Google Scholar 

  2. Christlieb, A.J., Rossmanith, J.A., Tang, Q.: Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J. Comput. Phys. 268, 302–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fu, L., Tang, Q.: High-order low-dissipation targeted ENO schemes for ideal magnetohydrodynamics. J. Sci. Comput. 80(1), 692–716 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot B\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35(3), 426–430 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balsara, D.S., Kim, J.: A comparison between divergence-cleaning and staggered-mesh formulations for numerical magnetohydrodynamics. Astrophys. J. 602(2), 1079 (2004)

    Article  Google Scholar 

  6. Zachary, A.L., Malagoli, A., Colella, P.: A higher-order Godunov method for multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput. 15(2), 263–284 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154(2), 284–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175(2), 645–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194(2), 588–610 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows-A constrained transport method. Astrophys. J. 332, 659–677 (1988)

    Article  Google Scholar 

  11. Tóth, G.: The \(\nabla \cdot B= 0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161(2), 605–652 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. von Neumann, J., Richtmyer, R.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jameson, A.: Analysis and design of numerical schemes for gas dynamics, 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. Comput. Fluid Dyn. 4, 171–218 (1994)

    Article  Google Scholar 

  14. Premasuthan, S., Liang, C., Jameson, A.: Computation of flows with shocks using the Spectral Difference method with artificial viscosity, I: Basic formulation and application. J. Comput. Phys. 98, 111–121 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Harten, A.: A high resolution scheme for the computation of weak solutions of hyperbolic conservation Laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, K.H., Kim, C.: Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process. J. Comput. Phys. 208, 570–615 (2005)

    Article  MATH  Google Scholar 

  17. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henrick, A.K., Aslam, T., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  21. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Acker, F., Borges, R.R., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726–753 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 33(3), 547–571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178(1), 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ren, Y.-X., Liu, M., Zhang, H.: A characteristic-wise compact WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, Z., Inaba, S., **ao, F.: Boundary variation diminishing (BVD) reconstruction: a new approach to improve Godunov schemes. J. Comput. Phys. 322, 309–325 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Semplice, M., Visconti, G.: Efficient implementation of adaptive order reconstructions. J. Sci. Comput. 83(1), 1–27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tsoutsanis, P., Dumbser, M.: Arbitrary high order central non-oscillatory schemes on mixed-element unstructured meshes. Comput. Fluids 225, 104961 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dumbser, M., Zanotti, O.: Very high order \(P_NP_M\) schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228(18), 6991–7006 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Suresh, A., Huynth, H., Suresh, A., Huynth, H.: Accurate monotonicity-preserving schemes with Runge–Kutta time step**. In: 13th Computational Fluid Dynamics Conference, p 2037

  34. Badia, S., Bonilla, J.: Monotonicity-preserving finite element schemes based on differentiable nonlinear stabilization. Comput. Methods Appl. Mech. Eng. 313, 133–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229(4), 1213–1237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fu, L., Karp, M., Bose, S.T., Moin, P., Urzay, J.: Shock-induced heating and transition to turbulence in a hypersonic boundary layer. J. Fluid Mech. 909, A8 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fu, L., Hu, X.Y., Adams, N.A.: Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. J. Comput. Phys. 349, 97–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fu, L., Hu, X.Y., Adams, N.A.: A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws. J. Comput. Phys. 374, 724–751 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fu, L.: A low-dissipation finite-volume method based on a new TENO shock-capturing scheme. Comput. Phys. Commun. 235, 25–39 (2019)

    Article  MathSciNet  Google Scholar 

  41. Fu, L.: A very-high-order TENO scheme for all-speed gas dynamics and turbulence. Comput. Phys. Commun. 244, 117–131 (2019)

    Article  MathSciNet  Google Scholar 

  42. Li, Y., Fu, L., Adams, N.A.: A low-dissipation shock-capturing framework with flexible nonlinear dissipation control. J. Comput. Phys. 428, 109960 (2021)

    Article  MathSciNet  Google Scholar 

  43. Haimovich, O., Frankel, S.H.: Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method. Comput. Fluids 146, 105–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dong, H., Fu, L., Zhang, F., Liu, Y., Liu, J.: Detonation simulations with a fifth-order TENO scheme. Commun. Comput. Phys. 25(5), 1357–1393 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Di Renzo, M., Fu, L., Urzay, J.: HTR solver: an open-source exascale-oriented task-based multi-GPU high-order code for hypersonic aerothermodynamics. Comput. Phys. Commun. 107262 (2020)

  46. Lusher, D.J., Sandham, N.D.: Shock-wave/boundary-layer interactions in transitional rectangular duct flows. Flow Turbul Combust 1–22 (2020)

  47. Hamzehloo, A., Lusher, D.J., Laizet, S., Sandham, N.D.: On the performance of WENO/TENO schemes to resolve turbulence in DNS/LES of high-speed compressible flows. Int. J. Numer. Methods Fluids 93(1), 176–196 (2021)

    Article  MathSciNet  Google Scholar 

  48. Peng, J., Liu, S., Li, S., Zhang, K., Shen, Y.: An efficient targeted ENO scheme with local adaptive dissipation for compressible flow simulation. J. Comput. Phys. 425, 109902 (2021)

    Article  MathSciNet  Google Scholar 

  49. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  50. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83(1), 148–184 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229(21), 8105–8129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Krivodonova, L., **n, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3–4), 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Helzel, C., Rossmanith, J.A., Taetz, B.: An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations. J. Comput. Phys. 230(10), 3803–3829 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Fu, L., Hu, X.Y., Adams, N.A.: A targeted ENO scheme as implicit model for turbulent and genuine subgrid scales. Commun. Comput. Phys. 26(2), 311–345 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Fu, L., Hu, X.Y., Adams, N.A.: Improved five- and six-point targeted essentially nonoscillatory schemes with adaptive dissipation. AIAA J. 57(3), 1143–1158 (2019)

    Article  Google Scholar 

  57. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)

    Article  MATH  Google Scholar 

  58. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Torrilhon, M.: Uniqueness conditions for Riemann problems of ideal magnetohydrodynamics. J. Plasma Phys. 69(03), 253–276 (2003)

    Article  Google Scholar 

  60. Ryu, D., Jones, T.: Numerical magetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys. J. 442, 228–258 (1995)

    Article  Google Scholar 

  61. Susanto, A.: High-order finite-volume schemes for magnetohydrodynamics (2014). http://hdl.handle.net/10012/8597

  62. Orszag, S.A., Tang, C.-M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90(01), 129–143 (1979)

    Article  Google Scholar 

  63. Kawai, S.: Divergence-free-preserving high-order schemes for magnetohydrodynamics: an artificial magnetic resistivity method. J. Comput. Phys. 251, 292–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yang, Y., Wan, M., Shi, Y., Yang, K., Chen, S.: A hybrid scheme for compressible magnetohydrodynamic turbulence. J. Comput. Phys. 306, 73–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149(2), 270–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Lin Fu acknowledges the generous startup fund from The Hong Kong University of Science and Technology (No. R9280) and the fund from Shenzhen Municipal Central Government Guides Local Science and Technology Development Special Funds Funded Projects (No. 2021Szvup138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L. An Efficient Low-Dissipation High-Order TENO Scheme for MHD Flows. J Sci Comput 90, 55 (2022). https://doi.org/10.1007/s10915-021-01722-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01722-6

Keywords

Navigation