Log in

Theoretical understanding of mechanochemical (ball-milling) synthesis of thioethers: a CDFT approach

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Mechanochemical synthesis has gained much attention owing to its environment-friendly nature. The synthesis of organic thioethers starting from organic diazonium and disulfide compounds under the ball-milling process is considered to study the corresponding theoretical aspect. The calculated rate constant values are found to be very small. The force required to cleave the C–N and S–S bonds in diazonium and disulfides are calculated following the constrained geometries simulate external force (COGEF) methodology. The presence of the electron donating group increases the C–N bond strength in diazonium compounds while it decreases the S–S bond strength in disulfides. The force-dependent ionization energy (I), and electron affinity (A) descriptors related rules: (i) if rneutral > rcation, then \({\left(\frac{\partial I}{\partial {F}_{e}}\right)}_{{F}_{e}=0}>0\), and (ii) if rneutral < ranion, then \({\left(\frac{\partial A}{\partial {F}_{e}}\right)}_{{F}_{e}=0}>0\) are followed by both systems. However, rules related to electronegativity (χ), hardness (η) and electrophilicity (ω) are not followed by diazonium compounds. In diazonium \({\left(\frac{\partial \chi }{\partial {F}_{e}}\right)}_{{F}_{e}=0}<0\) (with the applied external force, the electronegativity decreases) but in disulfide \({\left(\frac{\partial \chi }{\partial {F}_{e}}\right)}_{{F}_{e}=0}>0\) (with the applied external force, the electronegativity increases) as \({r}_{\text{c}\text{a}\text{t}\text{i}\text{o}\text{n}}< {r}_{\text{a}\text{n}\text{i}\text{o}\text{n}}\). In diazonium ions, \({\left(\frac{\partial \eta }{\partial {F}_{e}}\right)}_{{F}_{e}=0}>0\) but in disulfide \({\left(\frac{\partial \eta }{\partial {F}_{e}}\right)}_{{F}_{e}=0}<0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Takacs, Chem. Soc. Rev. 42, 7649 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. T. Stauch, A. Dreuw, Acc. Chem. Res. 50, 1041 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. T. Stauch, A. Dreuw, Chem. Rev. 116, 14137 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. A. McNaught, A.D. Wilkinson, IUPAC. Compendium of Chemical Terminology (the “Gold Book”), 2nd edn. (Blackwell Scientific Publications, Oxford, 1997)

    Google Scholar 

  5. S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Chem. Soc. Rev. 41, 413 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. M.K. Beyer, H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Science. 276, 1109 (1997). (80-.)

    Article  CAS  PubMed  Google Scholar 

  8. A.P. Wiita, R. Perez-Jimenez, K.A. Walther, F. Gräter, B.J. Berne, A. Holmgren, J.M. Sanchez-Ruiz, J.M. Fernandez, Nature. 450, 124 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. Alegre-Cebollada, R. Perez-Jimenez, P. Kosuri, J.M. Fernandez, J. Biol. Chem. 285, 18961 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Cui, Y. Yu, Z. Lin, Polym. (Guildf). 50, 930 (2009)

    Article  CAS  Google Scholar 

  11. G. Cravotto, E.C. Gaudino, P. Cintas, Chem. Soc. Rev. 42, 7521 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. M. Ashokkumar, J. Lee, S. Kentish, F. Grieser, Ultrason. Sonochem. 14, 470 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. S.G. Patra, K. Sathiyan, M. Meistelman, T. Zidki, Isr. J. Chem. 60, 630 (2020)

    Article  CAS  Google Scholar 

  14. T. Ando, S. Sumi, T. Kawate, J. Ichihara (née Yamawaki), and T. Hanafusa, J. Chem. Soc. Chem. Commun. (1984). https://doi.org/10.1039/C39840000439

    Article  Google Scholar 

  15. U.F. Fritze, M. Von Delius, Chem. Commun. 52, 6363 (2016)

    Article  CAS  Google Scholar 

  16. J.M. Lenhardt, M.T. Ong, R. Choe, C.R. Evenhuis, T.J. Martinez, S.L. Craig, Science. 329, 80 (2010)

    Article  Google Scholar 

  17. R. Boulatov, Choice Rev. Online. 53, 53 (2016)

    Google Scholar 

  18. H. Shy, P. Mackin, A.S. Orvieto, D. Gharbharan, G.R. Peterson, N. Bampos, T.D. Hamilton, Faraday Discuss. 170, 59 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Boldyreva, Chem. Soc. Rev. 42, 7719 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. T. Friščić, S.L. James, E.V. Boldyreva, C. Bolm, W. Jones, J. Mack, J.W. Steed, K.S. Suslick, Chem. Commun. 51, 6248 (2015)

    Article  Google Scholar 

  21. N. Mukherjee, T. Chatterjee, B.C. Ranu, J. Org. Chem. 78, 11110 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. N. Mukherjee, T. Chatterjee, B.C. Ranu, Arkivoc 2016, 53 (2015)

    Article  Google Scholar 

  23. B.C. Ranu, T. Chatterjee, N. Mukherjee, B. Ranu, A. Stolle (eds.), Ball Milling Towards Green Synthesis: Applications, Projects, Challenges (The Royal Society of Chemistry, Cambridge, 2015), pp. 1–33. https://doi.org/10.1039/9781782621980-00001

    Book  Google Scholar 

  24. T. Bettens, M. Alonso, P. Geerlings, F. De Proft, Phys. Chem. Chem. Phys. 21, 7378 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. M.K. Beyer, J. Chem. Phys. 112, 7307 (2000)

    Article  CAS  Google Scholar 

  26. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H.E. Gaub, Science. 283, 80 (1999)

    Article  Google Scholar 

  27. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68, 3801 (1978)

    Article  CAS  Google Scholar 

  28. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  CAS  Google Scholar 

  29. P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106, 2065 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. P.K. Chattaraj, D.R. Roy, Chem. Rev. 107, PR46 (2007)

    Article  CAS  Google Scholar 

  31. P.K. Chattaraj, S. Giri, S. Duley, Chem. Rev. 111, PR43 (2011)

    Article  PubMed  Google Scholar 

  32. U. Sarkar, P.K. Chattaraj, J. Phys. Chem. A 125, 2051 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. J. Ribas-Arino, M. Shiga, D. Marx, Angew. Chemie Int. Ed. 48, 4190 (2009)

    Article  CAS  Google Scholar 

  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian, Inc., Gaussian 16, Revision C.01 (Wallingford, CT, 2016)

  35. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1327 (2018)

    Article  Google Scholar 

  36. W.T. Duncan, R.L. Bell, T.N. Truong, J. Comput. Chem. 19, 1039 (1998)

    Article  CAS  Google Scholar 

  37. P.K. Chattaraj, S. Sengupta, J. Phys. Chem. 100, 16126 (1996)

    Article  CAS  Google Scholar 

  38. B.M. Deb, P.K. Chattaraj, Phys. Rev. A 39, 1696 (1989)

    Article  CAS  Google Scholar 

  39. R. Parthasarathi, M. Elango, V. Subramanian, P.K. Chattaraj, Theor. Chem. Acc. 113, 257 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PKC thanks Professor Subhash C. Basak and Professor Tanmoy Chakraborty for kindly inviting him to contribute an article to the special issue entitled “Recent Advances in Mathematical and Theoretical Chemistry” of the Journal of Mathematical Chemistry (JOMC). PKC would like to thank DST, New Delhi, for the J. C. Bose National Fellowship. SGP thanks IIT Kharagpur for a postdoctoral fellowship. RJ thanks IIT Kharagpur for SRF. HM thanks CSIR for SRF. The authors gratefully acknowledge the high-performance supercomputing system of IIT Kharagpur, the “PARAM Shakti.”

Funding

This work is supported by J. C. Bose National Fellowship, SR/S2/JCB-09/2009.

Author information

Authors and Affiliations

Authors

Contributions

RJ and SGP conceptualized and executed the computational work. RJ and SGP prepared the first draft of the manuscript. HM performed the rate analysis. PKC supervised the complete work and critically scrutinized the manuscript.

Corresponding author

Correspondence to Pratim Kumar Chattaraj.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, R., Patra, S.G., Mondal, H. et al. Theoretical understanding of mechanochemical (ball-milling) synthesis of thioethers: a CDFT approach. J Math Chem 61, 1825–1841 (2023). https://doi.org/10.1007/s10910-023-01492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01492-6

Keywords

Navigation