Log in

Large-Scale Chirality Measures and General Symmetry Deficiency Measures for Functional Group Polyhedra of Proteins

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Functional Group Polyhedra provide a simplified representation of the most essential spatial features of macromolecules, especially, of globular proteins. Since the functional group polyhedron model focuses on large scale features, the chirality and other symmetry deficiency measures of these molecules, when adapted to these polyhedra, should also be based on the characterization of large scale shape features. Two new approaches for the evaluation of such symmetry deficiency and chirality measures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitaigorodski A.I. (1961). Organic Chemical Crystallography. Consultants Bureau, New York, Chapter 4, pp. 75–100

    Google Scholar 

  2. Rassat A. (1984). Un critere de classement des sytemes chiraux de points a partir de la distance au sens de Haussdorf. Compt. Rend. Acad. Sci. (Paris) II 299:53–55

    CAS  Google Scholar 

  3. Gilat G. (1985). Chiral interactions in biomolecules. Chem. Phys. Lett. 121:13–16

    Article  CAS  Google Scholar 

  4. Barron L.D. (1986). Symmetry and molecular chirality. Chem. Soc. Rev. 15:189–223

    Article  CAS  Google Scholar 

  5. Mezey P.G. (1986). Tying knots around chiral centres: chirality polynomials and conformational invariants for molecules. J. Am. Chem. Soc.108:3976–3984

    Article  CAS  Google Scholar 

  6. Mezey P.G. (1986). Symmetry and periodicity of potential surfaces, Theor. Chim. Acta. 73:221–228

    Article  Google Scholar 

  7. G. Gilat, and J. Phys. A, Chiral coefficient – a measure of the amount of structural chrality, Math. Gen. 22 (1989) L545–L550

  8. Gilat G. (1990). On the quantification of symmetry in nature. Found. Phys. Lett. 3:189–196

    Article  Google Scholar 

  9. Hel-Or Y., Peleg S., and Avnir D. (1990). Two-dimensional rotational dynamic chirality and a chirality scale. Langmuir 6:1691–1695

    Article  CAS  Google Scholar 

  10. Mezey P.G. (eds) (1991). New Developments in Molecular Chirality. Kluwer, Dordrecht

    Google Scholar 

  11. Auf der Heyde T.P.E., Buda A.B., and Mislow K. (1991). Desymmetrization and the degree of chirality. J. Math. Chem. 6: 255–265

    Article  Google Scholar 

  12. Buda A.B., and Mislow K. (1991). On geometric measures of chirality. J. Mol. Struct. (Theochem). 232:1–12

    Article  Google Scholar 

  13. Meyer A.Y., and Avnir D. (1991). The relation between molecular shape and molecular rotations in chiral halogenated alkanes. Struct. Chem. 2:475–478

    Article  CAS  Google Scholar 

  14. Mezey P.G. (1991). The degree of similarity of three-dimensional bodies; applications to molecular shapes, J. Math. Chem. 7:39–49

    Article  CAS  Google Scholar 

  15. Mezey P.G. (1992). On the allowed symmetries of all distorted forms of conformers, molecules, and transition structures. Can. J. Chem. 70:343–347

    Article  CAS  Google Scholar 

  16. Mezey P.G. (1993). Shape in chemistry: an introduction to molecular shape and topology. VCH Publishers, New York

    Google Scholar 

  17. Mezey P.G. (1997). Quantum chemistry of macromolecular shape. Internat. Rev. Phys. Chem. 16:361–388

    Article  CAS  Google Scholar 

  18. Mezey P.G. (1998). The proof of the metric properties of a fuzzy chirality measure of molecular electron density clouds. J. Mol. Struct. Theochem. 455:183–190

    Article  CAS  Google Scholar 

  19. Mezey P.G. (1998). Generalized chirality and symmetry deficiency. J. Math. Chem. 23:65–84

    Article  CAS  Google Scholar 

  20. Mezey P.G. (1998). Mislow’s label paradox, chirality-preserving conformational changes, and related chirality measures. chirality 10:173–179

    CAS  Google Scholar 

  21. Mezey P.G. (1999). Theory of biological homochirality: chirality, symmetry deficiency, and electron-cloud holography in the shape analysis of biomolecules. In: Palyi G., Zucchi C., and Caglioti L. (eds) Advances in BioChirality. Elsevier Sci. Publ., Amsterdam, The Netherlands, pp. 35–46

    Chapter  Google Scholar 

  22. Mezey P.G. (2004). The role of imperfect symmetry in nature, art, mathematics, and chemistry: approximate symmetry and symmetry deficiency measures. J. Int. Soc. Interdisc. Study Symmetry 2004:166–169

    Google Scholar 

  23. Mezey P.G. (2004). The theory of chirality induction and chirality reduction in biomolecules. In: Palyi G., Zucchi C., and Cagliotti L. (eds) Progress in Biological Chirality. Elsevier, Oxford GB, Chapter 17, pp. 209 – 219

    Chapter  Google Scholar 

  24. Mezey P.G. (2004). Molecular similarity, quantum topology, and shape. In: Patric Bultinck, Jan Tollenaere P., Hans De Winter and Wilfried Langenaeker (eds). Computational Medicinal Chemistry and Drug Discovery. Marcel Decker Inc., New York, pp. 345–364

    Google Scholar 

  25. Mezey P.G. (1983) . The topological model of non-rigid molecules and reaction mechanisms. In: Maruani J., and Serre J. (eds) Symmetries and Properties of Non-Rigid Molecules: A Comprehensive Survey. Elsevier Sci. Publ. Co., Amsterdam, pp. 335–353

    Google Scholar 

  26. Mezey P.G. (1985). Topological theory of molecular conformations, In: Daudel R., Korb J.-P., Lemaistre J.-P. and Maruani J. (eds) Structure and Dynamics of Molecular Systems. Reidel, Dordrecht, Vol. I., pp. 41–56

    Google Scholar 

  27. Mezey P.G. and Maruani J. The concept of “syntopy”: a continuous extension of the symmetry concept for quasi-symmetric structures using fuzzy-set theory. Mol. Phys. 69 (1990) 97–113

    Article  CAS  Google Scholar 

  28. Mezey P.G., and Maruani J. (1993). The fundamental syntopy of quasi-symmetric systems: geometric criteria and the underlying syntopy of a nuclear configuration space. Int. J. Quantum Chem. 45:177–187

    Article  CAS  Google Scholar 

  29. Mezey P.G. (1994). Quantum chemical shape: new density domain relations for the topology of molecular bodies, functional groups, and chemical bonding. Can. J. Chem. 72:928–935 (Special issue dedicated to Prof. J.C. Polanyi)

    Article  CAS  Google Scholar 

  30. Mezey P.G. (1996). Functional groups in quantum chemistry. Adv. Quantum Chem. 27:163–222

    Article  Google Scholar 

  31. Mezey P.G. (1999). Local electron densities and functional groups in quantum chemistry. In: Surjan P.R. (eds). Topics in Current Chemistry, Correlation and Localization. Springer-Verlag, Berlin, Heidelberg New York, Vol. 203, pp. 167–186

    Chapter  Google Scholar 

  32. Maggiora G.M. and Mezey P.G. (1999). A fuzzy set Approach to functional group comparisons based on an asymmetric similarity measure, Int. J. Quant. Chem. 74:503–514

    Article  CAS  Google Scholar 

  33. Mezey P.G. (1999). Holographic electron density shape theorem and its role in drug design and toxicological risk assessment. J. Chem. Inf. Comp. Sci. 39:224–230

    CAS  Google Scholar 

  34. Mezey P.G. (1999). The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96:169–178

    Article  CAS  Google Scholar 

  35. Dubois J.-E. and Mezey P.G. (1992). Relations among functional groups within a stoichiometry: a nuclear configuration space approach. Int. J. Quantum Chem. 43:647–658

    Article  CAS  Google Scholar 

  36. Dubois J.-E. and Mezey P.G. (1999). A functional group database: a charge density – DARC approach. Molec. Eng. 8: 251–265

    Article  Google Scholar 

  37. Mezey P.G. (1981). Manifold theory of multidimensional potential surfaces. Int. J. Quantum Chem., Quant. Biol. Symp. 8: 185–196

    Article  CAS  Google Scholar 

  38. Mezey P.G. (1987). Potential energy hypersurfaces. Elsevier, Amsterdam

    Google Scholar 

  39. Mezey P.G., Fukui K., Arimoto S., and Taylor K. (1998). Polyhedral shapes of functional group distributions in biomolecules and related similarity measures. Int. J. Quantum Chem. 66:99–105

    Article  CAS  Google Scholar 

  40. Mezey P.G., Fukui K., and Arimoto S. (2000). A treatment of small deformations of polyhedral shapes of functional group distributions in biomolecules. Int. J. Quant. Chem. 76:756–761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Mezey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wang, L., Arimoto, S. et al. Large-Scale Chirality Measures and General Symmetry Deficiency Measures for Functional Group Polyhedra of Proteins. J Math Chem 40, 145–153 (2006). https://doi.org/10.1007/s10910-005-9019-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-005-9019-z

Keywords

Navigation