Log in

Structural, Morphological and Luminescence Properties of Sol–Gel Derived Gd3Al2Ga3O12:Ce: Effect of Molecular Weights of Cross-Linking Agent

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, the effect of cross-linking agent on structural, morphological and luminescence properties of Ce-doped Gadolinium–aluminium–gallium garnet (called GAGG:Ce3+) was studied. Monoethylene glycol (EG) and various molecular weights (MWs) of Polyethylene glycol (PEG 400 and 1000) were used as cross-linking agents for sol–gel derived samples which were characterized by differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrometry (FTIR) and photoluminescence (PL). XRD analysis showed that GAGG: Ce3+ crystallized in a single stable cubic phase for EG prepared sample and, independently in mixed cubic/perovskite phases for PEG 400 and 1000 prepared samples. FE-SEM investigation indicated a significant influence of the cross-linking agent on the morphology and the size of particles. Largest particles were obtained in PEG 1000 sample with an average size of ~ 414 nm. For PL, the highest emission intensity was observed for EG sample which is ascribed to single cubic phase. However, high luminescence quenching was found in high MWs of PEG samples that can be attributed to the growth of secondary phases, defect generation and high Ce4+ content. The nanogarnet obtained using EG presented a pure stable cubic phase and high luminescence emission making it a potential candidate to serve as an efficient scintillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. Auffray, R. Augulis, A. Fedorov, G. Dosovitskiy, L. Grigorjeva, V. Gulbinas, M. Koschan, M. Lucchini et al., Excitation transfer engineering in Ce-doped oxide crystalline scintillators by codo** with alkali-3 earth ions. Phys. Status Solidi A 215, 1700798 (2018). https://doi.org/10.1002/pssa.201700798

    Article  CAS  Google Scholar 

  2. G. Dosovitskiy, V. Dubov, P. Karpyuk, P. Volkov, G. Tamulaitis, A. Borisevich, A. Vaitkeviˇcius, K. Prikhodko, L. Kutuzov, R. Svetogorov, A. Veligzhanin, M. Korzhik, Activator segregation and micro-luminescence properties in GAGG: Ce ceramics. J. Lumin. 236, 118140 (2021). https://doi.org/10.1016/j.jlumin.2021.118140

    Article  CAS  Google Scholar 

  3. P. Sibczynski, J. Iwanowska-Hanke, M. Moszynski, L. Swiderski, M. Szawłowski, M. Grodzicka, T. Szczęśniak, K. Kamada, A. Yoshikawa, Characterization of GAGG: Ce scintillators with various Al-to-Ga ratio. Nucl. Instrum. Methods Phys. Res. A 772, 112–117 (2015). https://doi.org/10.1016/j.nima.2014.10.041

    Article  CAS  Google Scholar 

  4. K. Brylew, W. Drozdowski, A.J. Wojtowicz, K. Kamada, A. Yoshikawa, Studies of low temperature thermoluminescence of GAGG: Ce and LuAG: Pr scintillator crystals using the Tmax-Tstop method. J. Lumin. 154, 452–457 (2014). https://doi.org/10.1016/j.jlumin.2014.05.035

    Article  CAS  Google Scholar 

  5. J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka, K. Kamada, K. Tsutsumi, Y. Usuki, T. Yanagida, A. Yoshikawa, Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. A 712, 34–40 (2013). https://doi.org/10.1016/j.nima.2013.01.064

    Article  CAS  Google Scholar 

  6. M.P. Taggart, M. Nakhostin, P.J. Sellin, Investigation into the potential of GAGG: Ce as a neutron detector. Nucl. Instrum. Methods Phys. Res. A 931, 121–126 (2019). https://doi.org/10.1016/j.nima.2019.04.009

    Article  CAS  Google Scholar 

  7. J. Bok, O. Lalinsky, M. Hanus, Z. Onderisinova, J. Kelar, M. Kucera, GAGG: Ce single crystalline films: new perspective scintillators for electron detection in SEM. Ultramicroscopy 163, 1–5 (2016). https://doi.org/10.1016/j.ultramic.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  8. I. Gerasymov, T. Nepokupnaya, A. Boyarintsev, O. Sidletskiy, D. Kurtsev, O. Voloshyna, O. Trubaieva, Y. Boyarintseva, T. Sibilieva, A. Shaposhnyk, O. Opolonin, S. Tretyak, GAGG: Ce composite scintillator for X-ray imaging. Opt. Mater. 109, 110305 (2020). https://doi.org/10.1016/j.optmat.2020.110305

    Article  CAS  Google Scholar 

  9. J.H. Lima, K. Parkb, H.D. Kimc, J.H. Sod, J.H. Kim, Potential of GAGG: Ce scintillation crystals for synchrotron X-Ray microimaging. Curr. Appl. Phys. 19, 303–307 (2019). https://doi.org/10.1016/j.cap.2018.12.011

    Article  Google Scholar 

  10. W.W. Moses, Time of flight in PET revisited. IEEE Trans. Nucl. Sci. 50, 1325–1330 (2003). https://doi.org/10.1109/TNS.2003.817319

    Article  Google Scholar 

  11. C. Fong, A.W. Dong, A.J. Hill, B.J. Boyd, C.J. Drummond, Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organization in self-assembled biomimetic systems. Phys. Chem. Chem. Phys. 17, 17527–17540 (2015). https://doi.org/10.1039/C5CP01921D

    Article  CAS  PubMed  Google Scholar 

  12. P. Liu, Y. Liu, C. Cui, L. Wang, J. Qiao, P. Huang, Q. Shi, Y. Tian, H. Jiang, J. Jiang, Enhanced luminescence and afterglow by heat-treatment in reducing atmosphere to synthesize the Gd3Al2Ga3O12: Ce3+ persistent phosphor for AC-LEDs. J. Alloys Compd. 731, 389–396 (2018). https://doi.org/10.1016/j.jallcom.2017.10.037

    Article  CAS  Google Scholar 

  13. X. Teng, J. Li, G. Duan, Z. Liu, Development of Tb3+ activated gadolinium aluminate garnet (Gd3Al5O12) as highly efficient green-emitting phosphors. J. Lumin. 179, 165–170 (2016). https://doi.org/10.1016/j.jlumin.2016.06.029

    Article  CAS  Google Scholar 

  14. J.Y. Park, HCh. Jung, G.S.R. Raju, B.K. Moona, J.H. Jeong, S.M. Son, J.H. Kim, Sintering temperature effect on structural and luminescence properties of 10 mol% Y substituted Gd3Al5O12: Ce phosphors. Opt. Mater. 32, 293–296 (2009). https://doi.org/10.1016/j.optmat.2009.08.004

    Article  CAS  Google Scholar 

  15. J.M. Ogieglo, A. Katelnikovas, A. Zych, T. Justel, A. Meijerink, C.R. Ronda, Luminescence and luminescence quenching in Gd3(Ga, Al)5O12 scintillators doped with Ce3+. J. Phys. Chem. A 117, 2479 (2013). https://doi.org/10.1021/jp309572p

    Article  CAS  PubMed  Google Scholar 

  16. P. Sengar, K. García-Tapia, B. Can-Uc, K. Juarez-Moreno, O.E. Contreras-lópez, G.A. Hirata, Simultaneous paramagnetic and persistence-luminescence in GAGG: Ce, Pr nanoparticles synthesized by sol-gel for biomedical applications. J. Appl. Phys. 126, 083107 (2019). https://doi.org/10.1063/1.5098788

    Article  CAS  Google Scholar 

  17. Z. Dai, V. Boiko, K. Grzeszkiewicz, M.L. Saladino, J. Li, D. Hreniak, Effect of annealing treatment on the persistent luminescence of Y3Al2Ga3O12:Ce3+, Cr3+, Pr3+ ceramics. Opt. Mater. 105, 109888 (2020). https://doi.org/10.1016/j.optmat.2020.109888

    Article  CAS  Google Scholar 

  18. A. Luchechko, L. Kostyk, S. Varvarenko, O. Tsvetkova, O. Kravets, Green-emitting Gd3Ga5O12: Tb3+ nanoparticles phosphor: synthesis, structure, and luminescence. Nanoscale Res. Lett 12, 263 (2017). https://doi.org/10.1186/s11671-017-2032-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J.A. Serna, L. Rueda-Gensini, D.N. Céspedes-Valenzuela, J. Cifuentes, J.C. Cruz, C. Muñoz-Camargo, Recent advances on stimuli-responsive hydrogels based on tissue-derived ECMs and their components: towards improving functionality for tissue engineering and controlled drug delivery. Polymers 13(19), 3263 (2021). https://doi.org/10.3390/polym13193263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. Soler-Carracedo, I.R. Martín, F. Lahoz, H.C. Vasconcelos, A.D. Lozano-Gorrín, L.L. Martín, F. Paz-Buclatin, Er3+/Ho3+ codoped nanogarnet as an optical FIR based thermometer for a wide range of high and low temperatures. J. Alloys Compd. 847, 156541 (2020). https://doi.org/10.1016/j.jallcom.2020.156541

    Article  CAS  Google Scholar 

  21. S. Min, H. Kang, B. Seo, J. Cheong, C. Roh, S. Hong, A review of nanomaterial based scintillators. Energies 14(22), 7701 (2021). https://doi.org/10.3390/en14227701

    Article  CAS  Google Scholar 

  22. L. Zaidi, A. Boukerika, Y. Larbah, L. Benharrat, K. Hammoum, N. Selmi, L. Guerbous, Phase stabilization and luminescence properties of Gd3Al5O12: Ce nanopowders prepared by Pechini method: effect of pH and annealing temperature. Mater. Chem. Phys. 286, 126182 (2022). https://doi.org/10.1016/j.matchemphys.2022.126182

    Article  CAS  Google Scholar 

  23. L. Zaidi, A. Boukerika, L. Benharrat, K. Hammoum, N. Selmi, Effect of Ga3+ ions substitution on the garnet phase stability and photoluminescence properties of GLAGG: Ce solid solutions prepared via sol-gel method. J. Solid State Chem. 315, 123460 (2022). https://doi.org/10.1016/j.jssc.2022.123460

    Article  CAS  Google Scholar 

  24. J. Rodriguez-Carvajal, Recent developments of the program Fullprof, Commission on powder diffraction (IUCr). Newsletter 26, 12–19 (2001)

    Google Scholar 

  25. T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 378, 118–123 (2001)

    Article  Google Scholar 

  26. T. Roisnel, J. Rodriguez-Carvajal, WinPlotr, a graphic tool for powder diffraction. Laboratoire Léon Brillouin (CEA/CNRS), CEA-Saclay 91191 (2001). http://www-llb.cea.fr/fullweb/winplotr/winplotr.htm

  27. A. Jain, R. Koyani, C. Munoz, P. Sengar, O.E. Contreras, P. Juarez, G.A. Hirata, Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. J. Colloid Interface Sci. 526, 220–229 (2018). https://doi.org/10.1016/j.jcis.2018.04.100

    Article  CAS  PubMed  Google Scholar 

  28. Z. Dai, V. Boiko, K. Grzeszkiewicz, M. Markowska, F. Ursi, J. Holsa, M.L. Saladino, D. Hreniak, Effect of annealing temperature on persistent luminescence of Y3Al2Ga3O12:Cr3+ co-doped with Ce3+ and Pr3+. Opt. Mater. 111, 110522 (2021). https://doi.org/10.1016/j.optmat.2020.110522

    Article  CAS  Google Scholar 

  29. W. Linxiang, Y. Min, G. Changxin, Z. Wei**, Synthesis and luminescent properties of Ce3+ doped LuAG nano-sized powders by mixed solvothermal method. J. Rare Earths 28, 16–21 (2010). https://doi.org/10.1016/S1002-0721(09)60041-7

    Article  CAS  Google Scholar 

  30. R. Praveena, K. Balasubrahmanyam, L. Jyothi, G. Venkataiah, C. Basavapoornima, C.K. Jayasankar, White light generation from Dy3+-doped yttrium aluminium galliummixed garnet nano-powders. J. Lumin. 170, 62–270 (2016). https://doi.org/10.1016/j.jlumin.2015.10.012

    Article  CAS  Google Scholar 

  31. D. Boyer, G. Bertrand-Chadeyron, R. Mahiou, Structural and optical characterizations of YAG: Eu3+ elaborated by the sol–gel process. Opt. Mater. 26, 101–105 (2004). https://doi.org/10.1016/j.optmat.2003.11.005

    Article  CAS  Google Scholar 

  32. G. Li, Y. Tian, Y. Zhao, J. Lin, Recent progress in luminescence tuning of Ce3+ and Eu2+ activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44, 8688–8713 (2015). https://doi.org/10.1039/C4CS00446A

    Article  CAS  PubMed  Google Scholar 

  33. Y.F. Liu, P. Liu, L. Wang, C.E. Cui, HCh. Jiang, J. Jiang, A two-step solid-state reaction to synthesize the yellow persistent Gd3Al2Ga3O12:Ce3+ phosphor with an enhanced optical performance for AC-LEDs. Chem. Commun. 53, 10636–10639 (2017). https://doi.org/10.1039/C7CC05041K

    Article  CAS  Google Scholar 

  34. P. Bilski, A. Mrozik, M. Kłosowski, W. Gieszczyk, Y. Zorenko, K. Kamada, A. Yoshikawa, O. Sidletskiy, New efficient OSL detectors based on the crystals of Ce3+ doped Gd3Al5-xGaxO12 mixed garnet. Mater. Sci. Eng. B 273, 115448 (2021). https://doi.org/10.1016/j.mseb.2021.115448

    Article  CAS  Google Scholar 

  35. L. Guerbous, A. Boukerika, Nanomaterial host bands effect on the photoluminescence properties of Ce-doped YAG nanophosphor synthesized by sol–gel method. J. Nanomater. (2015). https://doi.org/10.1155/2015/617130

    Article  Google Scholar 

  36. A. Boukerika, L. Guerbous, M. Belamri, Effect of different annealing atmospheres on the structural and luminescence properties of Ce3+-doped YAG phosphors synthesized by sol–gel method. Optik 127, 5235–5239 (2016). https://doi.org/10.1016/j.ijleo.2016.03.037

    Article  CAS  Google Scholar 

  37. A. Boukerika, L. Guerbous, Investigation of the structural and photoluminescence properties of Ce3+-doped LuAG nanopowders prepared via sol–gel method. Opt. Mater. 40, 14–19 (2015). https://doi.org/10.1016/j.optmat.2014.11.039

    Article  CAS  Google Scholar 

  38. P. Głuchowski, K. Rajfur, Impact of the synthesis method on the conventional and persistent luminescence in Gd3–xCexGa3Al2O12. Inorg. Chem. 60, 18777–18788 (2021). https://doi.org/10.1021/acs.inorgchem.1c02239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O. Bezrkovnyi, M. Vorokhta, M. Małecka, W. Mista, L. Kepinski, NAP-XPS study of Eu3+→ Eu2+ and Ce4+ → Ce3+ reduction in Au/Ce0.80Eu0.20 catalyst. Catal. Commun. 135, 105875 (2020). https://doi.org/10.1016/j.catcom.2019.105875

    Article  CAS  Google Scholar 

  40. E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008). https://doi.org/10.1002/sia.2686

    Article  CAS  Google Scholar 

  41. F. Larachi, J. Pierre, A. Adnot, A. Bernis, Ce 3d XPS study of composite CexMn1− xO2− y wet oxidation catalysts. Appl. Surf. Sci. 195, 236–250 (2002). https://doi.org/10.1016/S0169-4332(02)00559-7

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare no funding Source received in the course of study, research or assembly of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AB: Conceptualization, Data curation, Investigation, Validation, Resources, Writing—original draft, Writing—review & editing. KH: Investigation. LZ: Data curation, Methodology, Formal analysis, Investigation, Writing—original draft. YL: Data curation, Software, Writing—review & editing. LB: Investigation, Writing—original draft, Writing—review & editing. NS: Data curation, Software. DEK: Data curation, Software.

Corresponding author

Correspondence to Y. Larbah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukerika, A., Hammoum, K., Zaidi, L. et al. Structural, Morphological and Luminescence Properties of Sol–Gel Derived Gd3Al2Ga3O12:Ce: Effect of Molecular Weights of Cross-Linking Agent. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02983-4

Keywords

Navigation