Log in

Strategies Towards Submicron Size and High-Performance Magnetic PGMA@Fe3O4@SiO2–COOH Microspheres with Biological Application

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The separation of target substances is a significant biological detection procedure, where magnetic microspheres can act as high-performance separation materials. However, challenges are still kept to fulfill all the requirements. A submicron magnetic poly (glycidyl methacrylate) (PGMA) microsphere was synthesized in this investigation by utilizing three distinct techniques: in situ coprecipitation, electrostatic self-assembly, and silica surface coating. The PGMA microspheres were initially produced through a soap-free emulsion polymerization technique, wherein the coagulation process was governed by surface charge density. This factor additionally impacted the size and monodispersity of the microspheres. Then, we discovered that the cap** agent sodium citrate (Na3Cit) effectively regulated the superparamagnetism properties of magnetic microspheres; the critical size of the superparamagnetic was 10.9 nm. Furthermore, the concentration of Fe2+ and Fe3+ effectively regulated the saturation magnetization, a property that correlated with the nucleation rate of the Fe3O4 crystal. Additionally, we demonstrated that the pH regulated the electrostatic self-assembly, and it was suggested that positively charged PGMA–NH2 microspheres and negatively charged Fe3O4 nanoparticles be tightly coupled. For application, the PGMA@Fe3O4 microspheres were subsequently coated with SiO2, which had been surface-modified with carboxyl groups. The PGMA@Fe3O4 and carboxyl-modified microspheres exhibited saturated magnetization values of 23.73 and 17.73 emu/g, respectively. These microspheres have been effectively utilized for the extraction of DNA from various sources such as Salmonella typhi, monkeypox virus, and clinical swab samples, suggesting the potential of these microspheres for nucleic acid separation in the biomedical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the figures and tables in this published article and its Supplementary Information file.

References

  1. Y.C. Guillaume, E. Peyrin, M. Thomassin, A. Ravel, C. Grosset, A. Villet, J.-F. Robert, C. Guinchard, Anal. Chem. 72, 4846–4852 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. J. Carlstedt, D. Lundberg, R.S. Dias, B. Lindman, Langmuir 28, 7976–7989 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. X. Geng, C. Ke, G. Chen, P. Liu, F. Wang, H. Zhang, X. Sun, J. Chromatogr. A 1216, 3553–3562 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. J.A. Asenjo, B.A. Andrews, J. Chromatogr. A 1238, 1–10 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Z. Liu, Y. Liu, S. Shen, D. Wu, J. Mater. Chem. B 6, 366–380 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Adv. Colloid Interface Sci. 281, 102165 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Q. Yang, Y. Dong, Y. Qiu, X. Yang, H. Cao, Y. Wu, Colloids Surf. B 191, 111014 (2020)

    Article  CAS  Google Scholar 

  8. M. Ge, J. Zhang, Z. Gai, R. Fan, S. Hu, G. Liu, Y. Cao, X. Du, Y. Shen, Chem. Eng. J. 404, 126427 (2021)

    Article  CAS  Google Scholar 

  9. M. Zandieh, J. Liu, Bioconjugate Chem. 32, 801–809 (2021)

    Article  CAS  Google Scholar 

  10. Y. Gao, Y. Tang, L. Gao, Y. Niu, R. Gao, X. Chen, Y. Hao, S. Wang, Anal. Chim. Acta 1161, 338475 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. J. Wang, H. Guan, Q. Liang, M. Ding, Compos. B 198, 108248 (2020)

    Article  CAS  Google Scholar 

  12. X. Zheng, C. Shen, Y. Guo, H. Zheng, RSC Adv. 13, 7413–7424 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Chen, F. Zhang, X. Shi, M. Lu, K. Qin, Q. Feng, R. Guo, J. Environ. Chem. Eng. 10, 108164 (2022)

    Article  CAS  Google Scholar 

  14. M.J. Kishor Kumar, J.T. Kalathi, Langmuir 35, 13923–13933 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. J. Yao, F. Gao, X. Liang, Y. Li, Y. Mi, Q. Qi, J. Yao, Z. Cao, Colloids Surf. A 570, 449–461 (2019)

    Article  CAS  Google Scholar 

  16. D. Horák, H. Hlídková, Š Trachtová, M. Šlouf, B. Rittich, A. Španová, Eur. Polym. J. 68, 687–696 (2015)

    Article  Google Scholar 

  17. J. Ugelstad, A. Berge, Fresenius’ J. Anal. Chem. 330, 328–328 (1988)

    Article  Google Scholar 

  18. X. Cao, Q. **e, S. Zhang, H. Xu, J. Su, J. Zhang, C. Deng, G. Song, J. Chromatogr. A 1607, 460402 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Yin, M. Chen, S. Zhou, L. Wu, J. Mater. Chem. 22, 11245–11251 (2012)

    Article  CAS  Google Scholar 

  20. X. She, J. Li, J. Zhu, T. Huang, Y. Li, J. Chromatogr. A 1637, 461809 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. H. Meng, Z. Zhang, F. Zhao, T. Qiu, J. Yang, Appl. Surf. Sci. 280, 679–685 (2013)

    Article  ADS  CAS  Google Scholar 

  22. S. Mavila, H.R. Culver, A.J. Anderson, T.R. Prieto, C.N. Bowman, Angew. Chem. Int. Ed. 61, e202110741 (2022)

    Article  CAS  Google Scholar 

  23. X. Sun, L. Yang, H. **ng, J. Zhao, X. Li, Y. Huang, H. Liu, Chem. Eng. J. 234, 338–345 (2013)

    Article  CAS  Google Scholar 

  24. L.-H. **ao, T. Wang, T.-Y. Zhao, X. Zheng, L.-Y. Sun, P. Li, F.-Q. Liu, G. Gao, A. Dong, Int. J. Mol. Sci. 14, 7391–7404 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. B. Jia, M.J. Cui, C.C. Yang, S.Y. Hu, Y.K. Lv, J. Appl. Polym. Sci. 136, 48019 (2019)

    Article  Google Scholar 

  26. B. Yu, B. Yang, G. Li, H. Cong, J. Mater. Sci. 53, 6471–6481 (2018)

    Article  ADS  CAS  Google Scholar 

  27. X. Fan, J. Liu, X. Jia, Y. Liu, H. Zhang, S. Wang, B. Zhang, H. Zhang, Q. Zhang, Nano Res. 10, 2905–2922 (2017)

    Article  CAS  Google Scholar 

  28. D. Yuan, L. Chen, L. Yuan, S. Liao, M. Yang, Q. Zhang, Chem. Eng. J. 287, 241–251 (2016)

    Article  CAS  Google Scholar 

  29. W. Li, Q. Liu, R. Chen, J. Yu, H. Zhang, J. Liu, R. Li, M. Zhang, P. Liu, J. Wang, Inorg. Chem. Front. 5, 1321–1328 (2018)

    Article  CAS  Google Scholar 

  30. Z. Zhang, P. He, W. Ma, P. Zuo, X. Liu, Q. Zhuang, Adv. Funct. Mater. 33, 2302212 (2023)

  31. B. Liu, Z. Fu, Y. Han, M. Zhang, H. Zhang, Colloid Polym. Sci. 295, 749–757 (2017)

    Article  CAS  Google Scholar 

  32. T. Yamamoto, M. Nakayama, Y. Kanda, K. Higashitani, J. Colloid Interface Sci. 297, 112–121 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. T. Yamamoto, J. Colloid Interface Sci. 290, 1023–1031 (2012)

    CAS  Google Scholar 

  34. R.M. Cornell, P.W. Schindler, Colloid Polym. Sci. 258, 1171–1175 (1980)

    Article  CAS  Google Scholar 

  35. B.K. Sodipo, O.A. Noqta, A.A. Aziz, M. Katsikini, F. Pinakidou, E.C. Paloura, J. Alloys Compd. 938, 168558 (2023)

    Article  CAS  Google Scholar 

  36. K.Y. Yoon, Z. Xue, Y. Fei, J.H. Lee, V. Cheng, H.G. Bagaria, C. Huh, S.L. Bryant, S.D. Kong, V.W. Ngo, A.-R. Rahmani, M. Ahmadian, C.J. Ellison, K.P. Johnston, J. Colloid Interface Sci. 462, 359–367 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. A. Atrei, F.F. Mahdizadeh, M.C. Baratto, A. Scala, Appl. Sci. 11, 6974 (2021)

    Article  CAS  Google Scholar 

  38. L.L. Félix, M.A. Rodriguez Martínez, D.G. Pacheco Salazar, J.A. Huamani Coaquira, RSC Adv. 10, 41807–41815 (2020)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. H.Y. Hah, S. Gray, C.E. Johnson, J.A. Johnson, V. Kolesnichenko, P. Kucheryavy, G. Goloverda, J. Magn. Magn. Mater. 539, 168382 (2021)

    Article  CAS  Google Scholar 

  40. A. Spivakov, C.-R. Lin, Y.-C. Chang, C.-C. Wang, D. Sarychev, Nanomaterials 10, 1888 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Upadhyay, K. Parekh, B. Pandey, J. Alloys Compd. 678, 478–485 (2016)

    Article  CAS  Google Scholar 

  42. A. Tahir, A. Saeed, I. Ramzan, S.S. Hayat, W. Ahmad, S. Naeem, M. Afzal, A. Mukhtar, T. Mehmood, B.S. Khan, Appl. Nanosci. 11, 1857–1865 (2021)

    Article  ADS  CAS  Google Scholar 

  43. H. Macková, F. Oukacine, Z. Plichta, M. Hrubý, J. Kučka, M. Taverna, D. Horák, J. Colloid Interface Sci. 421, 146–153 (2014)

    Article  ADS  PubMed  Google Scholar 

  44. X. Zhao, Z. Wei, Z. Zhao, Y. Miao, Y. Qiu, W. Yang, X. Jia, Z. Liu, H. Hou, A.C.S. Appl, Mater. Interfaces 10, 6608–6617 (2018)

    Article  CAS  Google Scholar 

  45. F. Qu, J. Liu, Y. Wang, S. Wen, Y. Chen, X. Li, S. Ruan, Sens. Actuators B 199, 346–353 (2014)

    Article  CAS  Google Scholar 

  46. X. Li, K. Cui, Z. Guo, T. Yang, Y. Cao, Y. **ang, H. Chen, M. **, Chem. Eng. J. 379, 122324 (2020)

    Article  CAS  Google Scholar 

  47. X. Lv, W. Huang, X. Ding, J. He, Q. Huang, J. Tan, H. Cheng, J. Feng, L. Li, J. Rare Earths 38, 1288–1296 (2020)

    Article  CAS  Google Scholar 

  48. X. Liang, J. Fan, Y. Zhao, R. ** et al., J. Rare Earths 39, 579–586 (2021)

    Article  CAS  Google Scholar 

  49. C. Wang, J. Zhuang, S. Jiang, J. Li, W. Yang, J. Nanopart. Res. 14, 1202 (2012)

    Article  ADS  Google Scholar 

  50. K. Murugesan, C.A. Hogan, Z. Palmer, B. Reeve, G. Theron, A. Andama, A. Somoskovi, A. Steadman, D. Madan, J. Andrews, J. Croda, M.K. Sahoo, A. Cattamanchi, B.A. Pinsky, N. Banaei, J. Clin. Microbiol. 57, e00782-e819 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. W. Tang, R. Mi, L. Wang, H. Chen, Sens. Actuators B 340, 129699 (2021)

    Article  Google Scholar 

  52. G. Liu, Q. Zhang, K. Wang, J. Niu, A. Gao, M. Chen, Z. Yang, C. Zhou, G. Gao, D. Cui, A.C.S. Appl, Nano Mater. 6, 3344–3356 (2023)

    ADS  CAS  Google Scholar 

  53. H. Cui, W. Song, X. Ru, W. Fu, L. Ji, W. Zhou, Z. Zhao, G. Qu, X.-F. Yu, G. Jiang, Talanta 258, 124479 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported from the “Leading Goose” R & D program (Grant No. 2022C01142) of Zhejiang Province, and the Collaboration Program (Grant No. 2022-KYY-509108-0023) of ZJU-Assure Research & Development Center.

Author information

Authors and Affiliations

Authors

Contributions

TX: Conceptualization, Methodology, Formal analysis, Writing (original draft, review and editing). YW: Resources, Formal analysis, Methodology. PA: Project administration, Formal analysis, Supervision. SL, WD, DC: Resources, Methodology, Supervision. ML: Formal analysis, Methodology. XQ and XF: Conceptualization, Methodology, Project administration, Investigation, Supervision, Writing (review and editing).

Corresponding author

Correspondence to Xvsheng Qiao.

Ethics declarations

Conflict of interest

There are no competing financial interests or personal relationships that could have appeared to influence the work to declare.

Ethical Approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10304 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**a, T., Wang, Y., Awasthi, P. et al. Strategies Towards Submicron Size and High-Performance Magnetic PGMA@Fe3O4@SiO2–COOH Microspheres with Biological Application. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-023-02975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02975-4

Keywords

Navigation