Log in

Fluorescent CdS QDs Modified With Molecular Imprinted Polymer for the Photodegradation of Imidacloprid and Buprofezin Pesticides Under Visible Light

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Molecular imprinted polymers (MIPs) are sort of custom-made material that can recognize the compounds selectively. Due to its unique qualities such as low cost, resilience and high selectivity, MIPs have sparked tremendous research interest in Photocatalysis, Extraction and sensing applications. The MIPs were developed using [6]-gingerol as template molecule Itaconic acid as monomer, EGDMA as crosslinker and the reaction was proceeded through Exsitu polymerization method using AIBN as initiator to prepare MIPs. The CdS Quantum Dots (QDs) was also employed in the synthesis to develop MIPs hybrid nanocomposite. The physicochemical properties of the MIPs polymer nano catalyst were investigated using a variety of spectroscopic and microscopic techniques. XRD, FESEM, were employed to analyze crystalline size and morphology of synthesized QDs and MIPs hybrid composite and the size of the QDs was found to be 6 nm. Thermogravimetric and differential scanning calorimeter were used to study thermal properties of the composite. Electrochemical study was also performed by using cyclic voltammetry and impedance spectroscopy. The energetic features of hybrid organic inorganic composites of CdS with Molecular imprinted polymers based on gingerol extract is presented using a DFT approach. Results demonstrate that the addition of MIPs contribute to stabilization of occupied states at Valence band which may enhance the photocatalytic properties by stabilization of freshly formed exciton due to light excitation. The composite was employed to investigate the photodegradation of imidacloprid and Buprofezin under visible light source and the highest degradation efficiency was found to be 84%(Imidacloprid) and 80%(Buprofezin) with varying amount of catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Wang, C. Zhang, G. Yang, Y. Yang, Biological properties of 6-gingerol: a brief review. Nat. Product Commun. (2014). https://doi.org/10.1177/1934578X1400900736

    Article  Google Scholar 

  2. R. Pai Jakribettu, R. Boloor, H. Bhat, A. Thaliath, R. Haniadka, M. Rai, T. George, S. Baliga, Ginger (Zingiber officinale Rosc.) Oils, in: 2016: pp. 447–454. https://doi.org/10.1016/B978-0-12-416641-7.00050-X.

  3. S.H. Hassan Ahmed, T. Gonda, A. Hunyadi, Medicinal chemistry inspired by ginger: exploring the chemical space around 6-gingerol. RSC Adv. 11, 26687–26699 (2021). https://doi.org/10.1039/D1RA04227K

    Article  Google Scholar 

  4. S.A. Waly, M.M. Shehata, H.H. Mahmoud, Synthesis and characterization of CdS nanoparticles prepared by precipitation in the presence of span 20 as surfactant. Russ. J. Appl. Chem. 90, 292–297 (2017). https://doi.org/10.1134/S1070427217020203

    Article  CAS  Google Scholar 

  5. R. Balu, A. Dakshanamoorthy, A simple hydrothermal synthesis of cadmium sulfide wrapped on graphene nanocomposite for supercapacitor applications. J. Nanosci. Nanotechnol. 21, 5835–5845 (2021). https://doi.org/10.1166/jnn.2021.19503

    Article  PubMed  CAS  Google Scholar 

  6. X. Liu, A facile route to preparation of sea-urchinlike cadmium sulfide nanorod-based materials. Mater. Chem. Phys. 91, 212–216 (2005). https://doi.org/10.1016/j.matchemphys.2004.11.015

    Article  CAS  Google Scholar 

  7. B. Srinivasa Goud, Y. Suresh, S. Annapurna, A.K. Singh, G. Bhikshamaiah, Green Synthesis and Characterization of Cadmium Sulphide Nanoparticles, Materials Today: Proceedings. 3 (2016) 4003–4008. https://doi.org/10.1016/j.matpr.2016.11.064.

  8. M. Pattabi, J. Uchil, Synthesis of cadmium sulphide nanoparticles. Sol. Energy Mater. Sol. Cells 63, 309–314 (2000). https://doi.org/10.1016/S0927-0248(00)00050-7

    Article  CAS  Google Scholar 

  9. P.S. Sharma, Z. Iskierko, A. Pietrzyk-Le, F. D’Souza, W. Kutner, Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review. Electrochem. Commun. 50, 81–87 (2015). https://doi.org/10.1016/j.elecom.2014.11.019

    Article  CAS  Google Scholar 

  10. M. Fizir, A. Richa, H. He, S. Touil, M. Brada, L. Fizir, A mini review on molecularly imprinted polymer based halloysite nanotubes composites: innovative materials for analytical and environmental applications. Rev Environ Sci Biotechnol. 19, 241–258 (2020). https://doi.org/10.1007/s11157-020-09537-x

    Article  CAS  Google Scholar 

  11. M. Gao, Y. Gao, G. Chen, X. Huang, X. Xu, J. Lv, J. Wang, D. Xu, G. Liu, Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.616326

    Article  PubMed  PubMed Central  Google Scholar 

  12. S. Basak, R. Venkatram, R.S. Singhal, Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 139, 109074 (2022). https://doi.org/10.1016/j.foodcont.2022.109074

    Article  Google Scholar 

  13. L. Spanhel, M.A. Anderson, Synthesis of porous quantum-size cadmium sulfide membranes: photoluminescence phase shift and demodulation measurements. J. Am. Chem. Soc. 112, 2278–2284 (1990). https://doi.org/10.1021/ja00162a031

    Article  CAS  Google Scholar 

  14. S. Mathew, S. Ani Joseph, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, Shifting of fluorescence peak in CdS nanoparticles by excitation wavelength change. J Fluoresc. 21, 1479–1484 (2011). https://doi.org/10.1007/s10895-011-0833-3

    Article  PubMed  CAS  Google Scholar 

  15. A.M.E. Nahrawy, A.B.A. Hammad, A.M. Mansour, Structural investigation and optical properties of Fe, Al, Si, and Cu–ZnTiO nanocrystals. Phys. Scr. 96, 115801 (2021). https://doi.org/10.1088/1402-4896/ac119e

    Article  Google Scholar 

  16. A. el-fattah Mansour, M. Nasr, H. Saleh, G. Mahmoud, Physical characterization of 5′,5″-dibromo-o-cresolsulfophthalein (BCP) spin-coated thin films and BCP/p-Si based diode. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-2920-2

    Article  Google Scholar 

  17. A.M. El Nahrawy, A.M. Mansour, A.B. Abou Hammad, Spectroscopic study of Eu3+-doped magnesium lanthanum phosphate (MLPO) films on SiO2 substrate. SILICON 14, 1227–1234 (2022). https://doi.org/10.1007/s12633-020-00855-x

    Article  CAS  Google Scholar 

  18. T.F. Retajczyk, D.K. Roe, Phase selective sampling in a.c. polarography and application to direct measurement of double-layer capacity. J. Electroanal. Chem. Interfacial Electrochem. 16, 21–32 (1968). https://doi.org/10.1016/S0022-0728(68)80273-6

    Article  CAS  Google Scholar 

  19. A.M. Bond, Modern polarographic methods in analytical chemistry (M. Dekker, New York, 1980)

    Google Scholar 

  20. L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of Malachite Green dye under solar light. Appl. Catal. A (2014). https://doi.org/10.1016/j.apcata.2014.10.053

    Article  Google Scholar 

  21. A. Derbalah, M. Sunday, R. Chidya, W. Jadoon, H. Sakugawa, Kinetics of photocatalytic removal of imidacloprid from water by advanced oxidation processes with respect to nanotechnology. J. Water Health 17, 254–265 (2019). https://doi.org/10.2166/wh.2019.259

    Article  PubMed  CAS  Google Scholar 

  22. Z. Akbari, M. Montazerozohori, S.J. Hoseini, R. Naghiha, P. Hayati, G. Bruno, A. Santoro, J.M. White, Synthesis, crystal structure, Hirshfeld surface analyses, antimicrobial activity, and thermal behavior of some novel nanostructure hexa-coordinated Cd(II) complexes: Precursors for CdO nanostructure. Appl. Organometallic Chem. (2021). https://doi.org/10.1002/aoc.6181

    Article  Google Scholar 

  23. K.A. Adegoke, M. Iqbal, H. Louis, S.U. Jan, M. Anam, O.S. Bello, Photocatalytic conversion of CO2 using ZnO semiconductor by hydrothermal method. Pak. J. Anal. Environ. Chem. 19, 1–27 (2018). https://doi.org/10.21743/pjaec/2018.06.01

    Article  CAS  Google Scholar 

  24. Q. Shi, Y. Wang, H. Zhao, F. Zhang, Y. Ma, Y. Yuan, C. Pei, B. Liu, L. Ning, C. Zhang, H. Yang, Spatial charge separation between wurtzite CdS polar (0001) and (000 1 ¯) facets and their enhanced visible-light photocatalytic activity. J. Alloy. Compd. 700, 138–148 (2017). https://doi.org/10.1016/j.jallcom.2017.01.049

    Article  CAS  Google Scholar 

  25. C. Zheng, Y.-P. Huang, Z.-S. Liu, Recent developments and applications of molecularly imprinted monolithic column for HPLC and CEC. J. Sep. Sci. 34, 1988–2002 (2011). https://doi.org/10.1002/jssc.201100164

    Article  PubMed  CAS  Google Scholar 

  26. A. Yuan, H. Lei, Z. Wang, X. Dong, Improved photocatalytic performance for selective oxidation of amines to imines on graphitic carbon nitride/bismuth tungstate heterojunctions. J Colloid Interface Sci. 560, 40–49 (2020). https://doi.org/10.1016/j.jcis.2019.10.060

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Methodology, Formal analysis, Writing – original draft, Investigation. B.C.D. Conceptualization, Methodology, Writing – original draft, Writing – review & editing. E.F.G. I. Formal analysis, Investigation. H.J. I. Conceptualization, Methodology, Writing – original draft, Writing – review & editing, Supervision.

Corresponding authors

Correspondence to Ajit Sharma or Deepak Kumar.

Ethics declarations

Conflcit of interest

The authors declare no Conflcit of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 183 KB)

Supplementary file2 (DOCX 183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A.Q., Tabasum, S., Rani, S. et al. Fluorescent CdS QDs Modified With Molecular Imprinted Polymer for the Photodegradation of Imidacloprid and Buprofezin Pesticides Under Visible Light. J Inorg Organomet Polym 33, 3468–3484 (2023). https://doi.org/10.1007/s10904-023-02753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02753-2

Keywords

Navigation