Log in

Chemical Vapor Deposition Based Superelastic and Superhydrophoboic Thermoplastic Polymeric Nanofibrous Aerogels for Water Purification

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Develo** high-performance, low-cost and large-scale absorbent materials is crucial for the treatment of water pollution caused by pollutants leakage and emission. Herein, superelastic and superhydrophobic thermoplastic polymeric nanofibrous aerogels (NFAs) were created for removal pollutants from water by using a facile and effective method. Poly(vinyl alcohol-co-ethylene) (EVOH) nanofibers fabricated by mass-production techniques were used to construct three-dimensional NFAs through combing freeze-drying process and cross-linking treatment. The optimal parameters for creating EVOH NFAs with good formability and resilience, including composition and ratio of dispersion, dosage of cross-linking agent were obtained through experiments. EVOH nanofibers bonded with each other by glutaraldehyde under acidic conditions to from fibrous network structure in EVOH NFAs. The silane-coated EVOH NFAs were prepared through further modification with vapor-phase methyltrichlorosilane. The deposition of siloxane improved mechanical strength and decreased plastic deformation after 500 cyclic compressions. An asperate fibrous and granular siloxane coating was deposited on the surface of EVOH NFAs. The surface water contact angle increased from 104.4° ± 4.0° to 152.7° ± 1.9°, wettability of NFAs transitioned to being superhydrophobic. Silane-coated EVOH NFAs exhibited superior absorption capacity (40–92 g/g) for a variety of organic pollutants. The organic pollutants would be collected and the sorbents could be reused after distillation or squeezing. A successful scale-up of such materials open up a new insight into design polymeric aerogels in low-cost and large-scale with substantial industrial water purification applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y.Q. Wang, Y. He, Y. Fan, H.J. Li, H. Yu, J. Yu, Y.L. Nie, S.H. Wang, A robust anti-fouling multifunctional aerogel inspired by seaweed for efficient water purification. Sep. Purif. Technol. 259, 118153 (2021)

    Article  CAS  Google Scholar 

  2. F. Wang, J.W. Dai, L.Q. Huang, Y. Si, J.Y. Yu, B. Ding, Biomimetic and superelastic slica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 14(7), 8975–8984 (2020)

    Article  PubMed  CAS  Google Scholar 

  3. Z.C. Yin, Y.P. Pan, M.T. Bao, Y. Li, Superhydrophobic magnetic cotton fabricated under low carbonization temperature for effective oil/water separation. Sep. Purif. Technol. 266, 118535 (2021)

    Article  CAS  Google Scholar 

  4. J.W. Xue, L. Zhu, X. Zhu, H. Li, C. Ma, S.F. Yu, D.F. Sun, F.J. **a, Q.Z. Xue, Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption. Sep. Purif. Technol. 259, 118106 (2021)

    Article  CAS  Google Scholar 

  5. J.W. Lu, D.D. Xu, J.K. Wei, S. Yan, R. **ao, Superoleophilic and flexible thermoplastic polymer nanofiber aerogels for removal of oils and organic solvents. ACS Appl. Mater. Interfaces 9(30), 25533–25541 (2017)

    Article  PubMed  CAS  Google Scholar 

  6. H.Z. Liu, B.Y. Geng, Y.F. Chen, H.Y. Wang, Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain. Chem. Eng. 5(1), 49–66 (2017)

    Article  CAS  Google Scholar 

  7. B. Tansel, M. Lee, Removal of crude oil from highly contaminated natural surfaces with corexit dispersants. J. Environ. Manage. 247, 363–370 (2019)

    Article  PubMed  CAS  Google Scholar 

  8. S.S. Long, Y.C. Feng, Y.Z. Liu, L.L. Zheng, L.H. Gan, J. Liu, X.H. Zeng, M.N. Long, Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation. Sep. Purif. Technol. 254, 117577 (2021)

    Article  CAS  Google Scholar 

  9. R.C. Prince, R.R. Lessard, J.R. Clark, Bioremediation of marine oil spills. Oil Gas Sci. Technol. 151(4), 495–512 (2004)

    CAS  Google Scholar 

  10. A. Jaggi, J.R. Radovic, L.R. Snowdon, S.R. Larter, T.B.P. Oldenburg, Composition of the dissolved organic matter produced during in situ burning of spilled oil. Org. Geochem. 138, 103926 (2019)

    Article  CAS  Google Scholar 

  11. Y.S. Lee, Y.T. Lim, W.S. Choi, One-step synthesis of environmentally friendly superhydrophilic and superhydrophobic sponges for oil/water separation. Materials 12(7), 1182 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  12. S.Y. Liu, J.T. Wang, Eco-friendly and facile fabrication of polyimide mesh with underwater superoleophobicity for oil/water separation via polydopamine/starch hybrid decoration. Sep. Purif. Technol. 250, 117228 (2020)

    Article  CAS  Google Scholar 

  13. Z.X. Wang, M.C. Han, J. Zhang, F. He, S.Q. Peng, Y.X. Li, Investigating and significantly improving the stability of tannic acid (TA)-aminopropyltriethoxysilane (APTES) coating for enhanced oil-water separation. J. Membr. Sci. 593, 117383 (2020)

    Article  CAS  Google Scholar 

  14. H.C. Bi, X. **e, K.B. Yin, Y.L. Zhou, S. Wan, L.B. He, F. Xu, F. Banhart, L.T. Sun, R.S. Ruoff, Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 22, 4421–4425 (2012)

    Article  CAS  Google Scholar 

  15. P.K. Huang, F. Wu, B. Shen, X.H. Ma, Y.Q. Zhao, M.H. Wu, J. Wang, Z.H. Liu, H.B. Luo, W.G. Zheng, Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation. Chem. Eng. J. 370, 1322–1330 (2019)

    Article  CAS  Google Scholar 

  16. Y.Y. Tian, H.Z. Ma, Solvent-free green preparation of reusable EG-PVDF foam for efficient oil-water separation. Sep. Purif. Technol. 253, 117506 (2020)

    Article  CAS  Google Scholar 

  17. Y.C. Yu, X.L. Shi, L. Liu, J.M. Yao, Highly compressible and durable superhydrophobic cellulose aerogels for oil/water emulsion separation with high flux. J. Mater. Sci. 56(3), 2763–2776 (2021)

    Article  CAS  Google Scholar 

  18. C.X. Tang, P. Brodie, Y.Z. Li, N.J. Grishkewich, M. Brunsting, K.C. Tam, Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions. Chem. Eng. J. 392, 124821 (2020)

    Article  CAS  Google Scholar 

  19. X.D. Cheng, S.Y. Zhu, Y.L. Pan, Y.R. Deng, L. Shi, L.L. Gong, Fire retardancy and thermal behaviors of Cellulose nanofiber/zinc borate aerogel. Cellulose 27, 7463–7474 (2020)

    Article  CAS  Google Scholar 

  20. P.Y. Hu, J. Lyu, C. Fu, W.B. Gong, J.H. Liao, W.B. Lu, Y.P. Chen, X.T. Zhang, Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14(1), 688–697 (2020)

    Article  PubMed  CAS  Google Scholar 

  21. J. Zhu, S.H. Lv, T.H. Yang, T. Huang, H. Yu, Q.H. Zhang, M.F. Zhu, Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Adv. Sustain. Syst. 4, 1900141 (2020)

    Article  CAS  Google Scholar 

  22. Z.M. An, C.S. Ye, R.B. Zhang, P. Zhou, Flexible and recoverable SiC nanofiber aerogels for electromagnetic wave absorption. Ceram. Int. 45(17), 22793–22801 (2019)

    Article  CAS  Google Scholar 

  23. Y. Si, J.Y. Yu, X.M. Tang, J.L. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014)

    Article  PubMed  CAS  Google Scholar 

  24. Q.X. Fu, L.F. Liu, Y. Si, J.Y. Yu, B. Ding, Shapeable, underwater superelastic, and highly phosphorylated nanofibrous aerogels for large-capacity and high-throughput protein separation. ACS Appl. Mater. Interfaces 11(47), 44874–44885 (2019)

    Article  PubMed  CAS  Google Scholar 

  25. Z.C. Qian, Z. Wang, Y. Chen, S.R. Tong, M.F. Ge, N. Zhao, J. Xu, Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J. Mater. Chem. A 6(3), 828–832 (2018)

    Article  CAS  Google Scholar 

  26. J. Zhu, G. Sun, Facile fabrication of hydrophilic nanofibrous membranes with an immobilized metal-chelate affinity complex for selective protein separation. ACS Appl. Mater. Interfaces 6(2), 925–932 (2014)

    Article  PubMed  CAS  Google Scholar 

  27. M.F. Li, R. **ao, G. Sun, Formation and morphology development of poly(butylene terephthalate) nanofibers from poly(butylene terephthalate)/cellulose acetate butyrate immiscible blends. Polym. Eng. Sci. 51(5), 835–842 (2011)

    Article  CAS  Google Scholar 

  28. P.P. Zhang, D.D. Xu, R. **ao, Morphology development and size control of PA6 nanofibers from PA6/CAB polymer blends. J. Appl. Polym. Sci. 132, 42184 (2015)

    Article  Google Scholar 

  29. M.J. Zhu, G.B. Xu, M.F. Yu, Y.B. Liu, R. **ao, Preparation, properties, and application of polypropylene micro/nanofiber membranes. Polym. Adv. Technol. 23(2), 247–254 (2012)

    Article  CAS  Google Scholar 

  30. Q.Z. Liu, J.H. Chen, T. Mei, X.W. He, W.B. Zhong, K. Liu, W.W. Wang, Y.D. Wang, M.F. Li, D. Wang, A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications. J. Mater. Chem. A 6(8), 3692–3704 (2018)

    Article  CAS  Google Scholar 

  31. Y.Z. Lin, L.B. Zhong, S. Dou, Z.D. Shao, Q. Liu, Y.M. Zheng, Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environ. Int. 128, 37–45 (2019)

    Article  PubMed  CAS  Google Scholar 

  32. Y.Q. Lu, Z.X. Niu, W.Z. Yuan, Multifunctional magnetic superhydrophobic carbonaceous aerogel with micro/nano-scale hierarchical structures for environmental remediation and energy storage. Appl. Surf. Sci. 480, 851–860 (2019)

    Article  CAS  Google Scholar 

  33. H.Z. Sai, R. Fu, L. **ng, J.H. **ang, Z.Y. Li, F. Li, T. Zhang, Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces 7(13), 7373–7381 (2015)

    Article  PubMed  CAS  Google Scholar 

  34. K. Lee, J.S. Jur, D.H. Kim, G.N. Parsons, Mechanisms for hydrophilic/hydrophobic wetting transitions on cellulose cotton fibers coated using Al2O3 atomic layer deposition. J. Vac. Sci. Technol. A 30(1), 1–7 (2012)

    Article  CAS  Google Scholar 

  35. J.T. Korhonen, M. Kettunen, R.H.A. Ras, O. Ikkala, Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces 3(6), 1813–1816 (2011)

    Article  PubMed  CAS  Google Scholar 

  36. J.W. Lu, S. Yan, W. Song, K.I. Jacob, R. **ao, Construction and characterization of versatile flexible composite nanofibrous aerogels based on thermoplastic polymeric nanofibers. J. Mater. Sci. 55(19), 8155–8169 (2020)

    Article  CAS  Google Scholar 

  37. A.W. Chan, R.A. Whitney, R.J. Neufeld, Kinetic controlled synthesis of pH-responsive network alginate. Biomacromol 9(9), 2536–2545 (2008)

    Article  CAS  Google Scholar 

  38. M.A. Shirgholami, M.S. Khalil-Abad, R. Khajavi, M.E. Yazdanshenas, Fabrication of superhydrophobic polymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersion process. J. Colloid Interface Sci. 359(2), 530–535 (2011)

    Article  PubMed  CAS  Google Scholar 

  39. Q.F. Zheng, Z.Y. Cai, S.Q. Gong, Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A 2(9), 3110–3118 (2014)

    Article  CAS  Google Scholar 

  40. G.R.J. Artus, S. Jung, J. Zimmermann, H.P. Gautschi, K. Marquardt, S. Seeger, Silicone nanofilaments and their application as superhydrophobic coating. Adv. Mater. 18(20), 2758–2762 (2006)

    Article  CAS  Google Scholar 

  41. Y.T. Wang, L.Y. Chen, H. Cheng, B.J. Wang, X.L. Feng, Z.P. Mao, X.F. Sui, Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chem. Eng. J. 402, 126222 (2020)

    Article  CAS  Google Scholar 

  42. H. Cheng, Y.Z. Li, B.J. Wang, Z.P. Mao, H. Xu, L.P. Zhang, Y. Zhong, X.F. Sui, Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose 25(1), 573–582 (2018)

    Article  CAS  Google Scholar 

  43. Y. Si, X.Q. Wang, L.Y. Dou, J.Y. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. 4, eaas8925 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, W.J. Zhang, S.H. Yu, Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 51(21), 5101–5105 (2012)

    Article  CAS  Google Scholar 

  45. M. Xu, D.N. Futaba, T. Yamada, M. Yumura, K. Hata, Carbon nanotubes with temperature-invariant viscoelasticity from -196° to 1000°C. Science 330(6009), 1364–1368 (2010)

    Article  PubMed  CAS  Google Scholar 

  46. Y. Liu, Y.P. Zhang, T.G. Liao, L. Gao, M. Wang, X. Xu, X.X. Yang, H. Liu, Boron nitride-nanosheet enhanced cellulose nanofiber aerogel with excellent thermal management properties. Carbohydr. Polym. 241, 116425 (2020)

    Article  PubMed  CAS  Google Scholar 

  47. W.B. Zhang, Y.Z. Zhu, X. Liu, D. Wang, J.Y. Li, L. Jiang, J. **, Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew. Chem. Int. Ed. 53(3), 856–860 (2014)

    Article  CAS  Google Scholar 

  48. F. Jiang, Y.L. Hsieh, Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A 2(18), 6337–6342 (2014)

    Article  CAS  Google Scholar 

  49. Y.P. Su, Z.Y. Li, H.J. Zhou, S.H. Kang, Y.X. Zhang, C.Z. Yu, G.Z. Wang, Ni/carbon aerogels derived from water induced self-assembly of Ni-MOF for adsorption and catalytic conversion of oily wastewater. Chem. Eng. J. 402, 126205 (2020)

    Article  CAS  Google Scholar 

  50. A. Mulyadi, Z. Zhang, Y.L. Deng, Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl. Mater. Interfaces 8(4), 2732–2740 (2016)

    Article  PubMed  CAS  Google Scholar 

  51. A. Li, H.X. Sun, D.Z. Tan, W.J. Fan, S.H. Wen, X.J. Qing, G.X. Li, S.Y. Li, W.Q. Deng, Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ. Sci. 4(6), 2062–2065 (2011)

    Article  CAS  Google Scholar 

  52. P. Song, J.W. Cui, J. Di, D.B. Liu, M.Z. Xu, B.J. Tang, Q.S. Zeng, J. **ong, C.D. Wang, Q. He, L.X. Kang, J.D. Zhou, R.H. Duan, B.B. Chen, S.S. Guo, F.C. Liu, J. Shen, Z. Liu, Carbon microtube aerogel derived from kapok fiber: an efficient and recyclable sorbent for oils and organic solvents. ACS Nano 14(1), 595–660 (2020)

    Article  PubMed  CAS  Google Scholar 

  53. H.C. Bi, Z.Y. Yin, X.H. Cao, X. **e, C.L. Tan, X. Huang, B. Chen, F.T. Chen, Q.L. Yang, X.Y. Bu, X.H. Lu, L.T. Sun, H. Zhang, Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 25(41), 5916–5921 (2013)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 51803081 and No. 20874010) and Changzhou Sci&Tech Program (No .CJ20210042)

Funding

The funded was provided by National Natural Science Foundation of China (Nos. 51803081, 20874010), Changzhou Sci&Tech Program (No. CJ20210042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Lu, Songjun Li or Li Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10904_2022_2330_MOESM1_ESM.docx

Supplementary data to this article can be found online at Figs. S1-S12 and Tables S1-S2 showing contact angles, nanofibrous suspensions, frozen nanofibrous suspensions, photographs of EVOH NFAs with different GA contents, mechanisms of cross-linking, ATR-FTIR spectra, EVOH NFAs after releasing loading, proposed silanization reaction, XPS spectra, SEM images, stress-strain curves, physical properties and sorption capacities of various sorbents. (DOCX 6384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Jiang, Y., **ao, R. et al. Chemical Vapor Deposition Based Superelastic and Superhydrophoboic Thermoplastic Polymeric Nanofibrous Aerogels for Water Purification. J Inorg Organomet Polym 32, 2975–2985 (2022). https://doi.org/10.1007/s10904-022-02330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02330-z

Keywords

Navigation