Log in

The Fluorescence Sensing Capability of 1,4-dihydroxyanthraquinone Towards Metal Ions and Imaging Cells

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence and colorimetric sensors have gained significant traction in diverse scientific domains, including environmental, agricultural, and pharmaceutical chemistry. This article comprehensively surveys recent advancements in develo** sensors employing 1,4-dihydroxyanthraquinone(1,4-DHAQ). The study delves into the unique properties of 1,4-dihydroxyanthraquinone(1,4-DHAQ) as a sensor, focusing on its capacity to detect Cu2+ ions and elucidating its fluorescence quenching mechanisms. Furthermore, the interaction of dihydroxyanthraquinone with Ga(III), Al(III), and In(III) ions is explored under both aqueous and non-aqueous conditions, leading to the formation of distinctive fluorescent species. The investigation extends to factors influencing ligand behavior, including time dependency, temperature, solvent type, counterions, and pH levels. These key parameters are systematically analyzed to understand sensor performance better. In conclusion, the article investigates the utility of the 1,4-dihydroxyanthraquinone-Zn2+ probe as a versatile sensing platform for phosphate anions, particularly in live cell imaging. The findings contribute to the evolving landscape of sensor technologies, offering insights into the diverse applications and potential advancements in this burgeoning field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

All the written material is new not a copy.

Code Availability

Not Applicable.

References

  1. Fouillaud M et al (2016) Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected biological activities. Mar Drugs 14(4):64

    Article  PubMed  PubMed Central  Google Scholar 

  2. Diaz AN (1990) Absorption and emission spectroscopy and photochemistry of 1, 10-anthraquinone derivatives: a review. J Photochem Photobiol A 53(2):141–167

    Article  Google Scholar 

  3. Gessler N, Egorova A, Belozerskaya T (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99

    Article  CAS  Google Scholar 

  4. Noushija MK et al (2022) Selective recognition and reversible “Turn-Off” fluorescence sensing of acetate (CH3COO−) anion at Ppb level using a simple quinizarin fluorescent dye. Chemistry 4(4):1407–1416

    Article  CAS  Google Scholar 

  5. Zhang J et al (2016) Dihydroxyanthraquinone derivatives: natural dyes as blue-light-sensitive versatile photoinitiators of photopolymerization. Polym Chem 7(47):7316–7324

    Article  CAS  Google Scholar 

  6. Dumur F (2023) Recent advances on Anthraquinone-based photoinitiators of polymerization. Eur Polym J 191:112039

    Article  CAS  Google Scholar 

  7. Román Ceba M, Fernández-Gutiérrez A, Mahedero M (1983) Fluorimetrische Bestimmung von Mg (II)-Spuren mit 1, 8-Dikydroxyanthrachinon. Microchim Acta 80:85–94

    Article  Google Scholar 

  8. Das S et al (2015) ESIPT and CHEF based highly sensitive and selective ratiometric sensor for Al 3+ with imaging in human blood cells. New J Chem 39(11):8582–8587

    Article  CAS  Google Scholar 

  9. Sinha S et al (2015) Exploring 1, 4-dihydroxyanthraquinone as long-range emissive ratiometric fluorescent probe for signaling Zn2+/PO43−: Ensemble utilization for live cell imaging. J Photochem Photobiol B 148:181–187

    Article  CAS  PubMed  Google Scholar 

  10. Quinti L et al (2003) A study of the luminescent complexes formed by the dye 1, 4-dihydroxyanthraquinone (quinizarin) and Ga (III) and In (III). J Photochem Photobiol A 155(1–3):93–106

    Article  CAS  Google Scholar 

  11. Ceba MR, Fernandez-Gutierrez A, Sánchez CM (1985) Some observations on the use of 1, 4-dihydroxyanthraquinone as a fluorometric reagent for traces of lithium. Microchem J 32(3):286–292

    Article  Google Scholar 

  12. Hou L et al (2017) An anthraquinone-based highly selective colorimetric and fluorometric sensor for sequential detection of Cu 2+ and S 2− with intracellular application. J Mater Chem B 5(45):8957–8966

    Article  CAS  PubMed  Google Scholar 

  13. Somma R, Granieri D, Troise C, Terranova C, De Natale G, Pedone M (2017) Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy). Sci Total Environ 583:408−420

  14. Prodromidis MI, Veltsistas PG, Karayannis MI (2000) Electrochemical study of chemically modified and screen-printed graphite electrodes with [SbVO (CHL) 2] Hex. Application for the selective determination of sulfide. Anal Chem 72(17):3995–4002

    Article  CAS  PubMed  Google Scholar 

  15. Lambert TW et al (2006) Hydrogen sulfide (H2S) and sour gas effects on the eye. A historical perspective. Sci Total Environ 367(1):1–22

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Beauchamp R et al (1984) A critical review of the literature on hydrogen sulfide toxicity. CRC Crit Rev Toxicol 13(1):25–97

    Article  CAS  Google Scholar 

  17. Wang Y et al (2013) 1, 4-Dihydroxyanthraquinone–Cu 2+ ensemble probe for selective detection of sulfide anion in aqueous solution. Anal Methods 5(20):5493–5500

    Article  CAS  ADS  Google Scholar 

  18. Lou X et al (2012) An indirect approach for anion detection: the displacement strategy and its application. Chem Commun 48(68):8462–8477

    Article  CAS  Google Scholar 

  19. Kaur N (2022) Anthraquinone appended chemosensors for fluorescence monitoring of anions and/or metal ions. Inorg Chim Acta 536:120917

    Article  CAS  Google Scholar 

  20. Chae MY, Cherian XM, Czarnik AW (1993) New reagents for the syntheses of fluorescent chemosensors. Anthrylogous ethylene dibromides. J Org Chem 58(21):5797–5801

    Article  CAS  Google Scholar 

  21. Bissell RA, De Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, Mccoy, CP, Sandanayake, KRAS  (1994) ChemInform abstract: fluorescent PET (Photoinduced Electron Transfer) sensors. ChemInform 25

  22. Fukuhara G (2020) Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors. J Photochem Photobiol C 42:100340

    Article  CAS  Google Scholar 

  23. HeeáLee M, SeungáKim J (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44(13):4185–4191

    Article  Google Scholar 

  24. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Godbole G, Pathak S (1986) Chemical transformations of 1-methyl-2α-acetoxy-4β-isopropenyl bicyclo (3, 1, 0) hexane. Curr Sci 55(7):343–345

    Google Scholar 

  26. Kiraly R, Martin RB (1982) Metal ion binding to daunorubicin and quinizarin. Inorg Chim Acta 67:13–18

    Article  CAS  Google Scholar 

  27. Roman M et al (1986) Study of the 1, 4-dihydroxyanthraquinone-yttrium (III) complex in solution and in the solid state. Microchem J 34(3):270–276

    Article  CAS  Google Scholar 

  28. Coble HD, Holtzclaw HF Jr (1974) Chelate polymers of copper (II) with various dihydroxyquinoid ligands. J Inorg Nucl Chem 36(5):1049–1053

    Article  CAS  Google Scholar 

  29. Allen NS et al (1987) Spectroscopic properties of a novel fluorescent complex of aluminium and quinizarin. J Photochem 38:365–373

    Article  CAS  Google Scholar 

  30. Hu Y-Z, An J-Y, Jiang L-J (1994) Studies on the chelation of hypocrellin A with aluminium ion and the photodynamic action of the resulting complex. J Photochem Photobiol, B 22(3):219–227

    Article  PubMed  Google Scholar 

  31. Allen N, Richards A (1990) Spectroscopic, photochemical and photoconductive properties of a novel fluorescent polymeric complex of quinizarin and aluminium. Eur Polymer J 26(11):1229–1235

    Article  Google Scholar 

  32. Gomez-Hens A, Valcarcel M (1982) Spectrofluorimetric determination of inorganic anions: a review. Analyst 107(1274):465–494

    Article  CAS  ADS  Google Scholar 

  33. Kaur N, Gauri (2022) Anthraquinone appended chemosensors for fluorescence monitoring of anions and/or metal ions. Inorganica Chim Acta 536:120917

    Article  CAS  Google Scholar 

  34. Langdon-Jones EE, Pope SJA (2014) The coordination chemistry of substituted anthraquinones: Developments and applications. Coord Chem Rev 269:32–53

    Article  CAS  Google Scholar 

  35. Mariappan K, Sykes AG (2013) The chemistry of constrained crown ring systems and fluorescence sensor applications. J Incl Phenom Macrocycl Chem 75:23–30

    Article  CAS  Google Scholar 

  36. Quinti L et al (2003) A study of the strongly fluorescent species formed by the interaction of the dye 1, 4-dihydroxyanthraquinone (quinizarin) with Al (III). J Photochem Photobiol A 155(1–3):79–91

    Article  CAS  Google Scholar 

  37. Mohanty T, Choudhury SD (2022) Configurable fluorescent constructs for detection and discrimination of fluoride and biological phosphates. J Mol Liq 358:119194

    Article  CAS  Google Scholar 

  38. Kar C, Das G (2013) A retrievable fluorescence “TURN ON” sensor for sulfide anions. J Photochem Photobiol A 251:128–133

    Article  CAS  Google Scholar 

  39. Chen W et al (2015) Selective, highly sensitive fluorescent probe for the detection of sulfur dioxide derivatives in aqueous and biological environments. Anal Chem 87(1):609–616

    Article  CAS  PubMed  Google Scholar 

  40. Tayade K et al (2014) Architecture of dipodal ratiometric motif showing discrete nanomolar response towards fluoride ion. Sens Actuators B Chem 202:1333–1337

    Article  CAS  Google Scholar 

  41. Khairnar N et al (2014) Novel fluorescent chemosensing of CN− anions with nanomolar detection using the Zn 2+–isonicotinohydrazide metal complex. RSC Adv 4(79):41802–41806

    Article  CAS  ADS  Google Scholar 

  42. Ganjali M et al (2009) A new Tb3+-selective fluorescent sensor based on 2-(5-(dimethylamino) naphthalen-1-ylsulfonyl)-N-henylhydrazinecarbothioamide. Spectrochim Acta Part A Mol Biomol Spectrosc 74(2):575–578

    Article  CAS  ADS  Google Scholar 

  43. Yadav UN et al (2014) Quinoline-based chemosensor for fluoride and acetate: a combined experimental and DFT study. Sens Actuators B: Chem 197:73–80

    Article  CAS  Google Scholar 

  44. Sharma D et al (2014) Anion selective chromogenic and fluorogenic chemosensor and its application in breast cancer live cell imaging. RSC Adv 4(78):41446–41452

    Article  CAS  ADS  Google Scholar 

  45. Gunnlaugsson T et al (2006) Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250(23–24):3094–3117

    Article  CAS  Google Scholar 

  46. Tang L et al (2013) Rapid and highly selective relay recognition of Cu (II) and sulfide ions by a simple benzimidazole-based fluorescent sensor in water. Sens Actuators B: Chem 185:188–194

    Article  CAS  Google Scholar 

  47. Wu J et al (2022) “Off-on” fluorescence probe based on green emissive carbon dots for the determination of Cu2+ ions and glyphosate and development of a smart sensing film for vegetable packaging. Microchim Acta 189(3):131

    Article  CAS  Google Scholar 

  48. Sinha S et al (2014) Triazole-based Zn2+-specific molecular marker for fluorescence bioimaging. Anal Chim Acta 822:60–68

    Article  CAS  PubMed  Google Scholar 

  49. Park GJ et al (2014) A single chemosensor for multiple analytes: fluorogenic detection of Zn 2+ and OAc− ions in aqueous solution, and an application to bioimaging. New J Chem 38(6):2587–2594

    Article  CAS  Google Scholar 

  50. Sivaraman G, Anand T, Chellappa D (2014) Pyrene based selective–ratiometric fluorescent sensing of zinc and pyrophosphate ions. Anal Methods 6(7):2343–2348

    Article  CAS  Google Scholar 

  51. Kiyose K et al (2006) Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J Am Chem Soc 128(20):6548–6549

    Article  CAS  PubMed  Google Scholar 

  52. Singh N, Jang DO (2011) Tetrapodal receptors for selective fluorescent sensing of AMP: analyte-induced conformational restriction to persuade fluorescence enhancement. Tetrahedron Lett 52(20):2608–2610

    Article  CAS  Google Scholar 

  53. Sinha S et al (2015) Highly photostable zinc selective molecular marker bearing flexible pivotal unit: opto-fluorescence enhancement effect and imaging applications in living systems. Dalton Trans 44(20):9506–9515

    Article  CAS  PubMed  Google Scholar 

  54. Cheuk D et al (2015) Investigation into solid and solution properties of quinizarin. CrystEngComm 17(21):3985–3997

    Article  CAS  Google Scholar 

  55. Wang Y et al (2012) Colorimetric and fluorescence sensing of Cu2+ in water using 1,8-dihydroxyanthraquinone-β-cyclodextrin complex with the assistance of ammonia. Talanta 94:172–177

    Article  CAS  PubMed  Google Scholar 

  56. Goshisht M, Tripathi N (2021) Fluorescence-based sensors as an emerging tool for anion detection: Mechanism, sensory materials and applications. J Mater Chem C 9:9820–9850

    Article  CAS  Google Scholar 

  57. Azevêdo L et al (2007) Evaluation of the Formation and Stability of Hydroxyalkylsulfonic Acids in Wines. J Agric Food Chem 55:8670–8680

    Article  PubMed  Google Scholar 

  58. Pal A et al (2021) A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coord Chem Rev 448:214167

    Article  CAS  Google Scholar 

  59. Ali R, Razi SS, Gupta RC, Dwivedi SK, Misra A (2016) An efficient ICT based fluorescent turn-on dyad for selective detection of fluoride and carbon dioxide. New J Chem 40:162–170

    Article  CAS  Google Scholar 

  60. Liu X et al (2018) Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175(2):502–513.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085

    Article  CAS  PubMed  Google Scholar 

  62. Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 11:173–186

    Article  CAS  PubMed  Google Scholar 

  63. Beer P, Gale P (2001) Anion recognition and sensing: the state of the art and future perspectives. Angew Chem Int Ed Engl 40:486–516

    Article  CAS  PubMed  Google Scholar 

  64. Sharma D et al (2015) Bioimaging application of a novel anion selective chemosensor derived from vitamin B6 cofactor. J Photochem Photobiol B: Biol 148:37–42

    CAS  Google Scholar 

  65. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476

    Article  PubMed  Google Scholar 

  66. Bowman-James K, Bianchi A, García-España E (2012) Anion coordination chemistry. John Wiley & Sons

  67. Prasanna de Silva A et al (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The basic idea and outline of the present article are the collective contributions of all authors. They all read and approved the final manuscript of this research article. Kanwal Shahzadi and Sadia Asim play a key role in collecting data regarding the Dual-emission fluorescent chemical sensor properties of 1,4 dihydroxy anthraquinones and their applications for detecting various metal ions. Asim Mansha collected cell imagining applications of Anthraquinone derivatives. The first draft of the manuscript was written by Kanwal Shahzadi which Sadia Asim and Asim Mansha later refined.

Corresponding author

Correspondence to Sadia Asim.

Ethics declarations

Ethics Approval

Not applicable.

Conset to Participate

Yes, i got permission.

Consent for Publication

Yes, u can publish it.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzadi, K., Mansha, A. & Asim, S. The Fluorescence Sensing Capability of 1,4-dihydroxyanthraquinone Towards Metal Ions and Imaging Cells. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03625-9

Keywords

Navigation