Log in

Effects of Metal Ions and Substituents on HOMO–LUMO Gap Evident from UV–Visible and Fluorescence Spectra of Anthracene Derivatives

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Controlled intake of complex metal cations and anions in the human body and other biological systems is essential for the health and well-being of the environment. Anthracene and anthracene derivatives are the most widely used sensors for this purpose. Because of their convenience, better detection and results are preferred over colorimetric sensors, which offer better color detection by the naked eye. This review article will present different designs of chemosensors using fluorescence and UV–visible spectroscopy to determine different ions. Density functional theory and Austin model 1 are widely used for theoretical and computational studies of the energy levels of molecules. The Indo/Cis method is used to calculate the geometries of anthracene oligomers. A novel anthracene-based fluorescent probe containing the benzothiazole group BFA was highly sensitive and selective toward trivalent cations (Cr3+ and Fe3+). This sensor is not sensitive to other ions, including Aluminum trivalent ions. (N- ((anthracen-9-yl) methyl)-N-(pyridin-2-yl) pyridin-2-amine) has been designed to detect zinc and copper. Click chemistry using photodimerization can be used to form cellulose nanoparticles. TEMPO-mediated hypohalite oxidation converts hydroxyl groups to carboxylic groups. Amide linkage formation between amine and carboxylic acid was followed by the installation of an alkyne group. Copper (I)-catalyzed Azide‐Alkyne Cycloaddition (CuAAC) was used to produce highly photoresponsive and fluorescent cellulose nanoparticles by using coumarin, anthracene, and generated nanomaterials. The effects of naphthalene and phenanthrene on the spectra of anthracene were determined in a dilute solution. Temperature and solvent effects introduce different changes in fluorescence, emission, and absorption bands, leading to some changes in the configuration of anthracene. The solvent and temperature effects on variations of emission maxima of exciplex anthracene—diethylaniline (DEA) are also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Scheme 1
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Availability of Data and Material

All the written material is new not a copy.

Code Availability

Not Applicable.

References

  1. Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics. Chem Rev 104(11):4891–4946

    Article  CAS  PubMed  Google Scholar 

  2. Somashekar M, Chetana P (2016) A Review on anthracene and its derivatives: applications. Research & Reviews: Journal of Chemistry 5(3):45–52

    CAS  Google Scholar 

  3. Kumar CV, Punzalan EH, Tan WB (2000) Adenine-thymine base pair recognition by an anthryl probe from the DNA minor groove. Tetrahedron 56(36):7027–7040

    Article  CAS  Google Scholar 

  4. Tolpygin I et al (2003) New fluorescent chemosensors on the basis of 9-aminomethylanthracene. Russ J Org Chem 39:1364–1366

    Article  CAS  Google Scholar 

  5. Yao Y-S et al (2006) Fine tuning of the photophysical and electroluminescent properties of DCM-type dyes by changing the structure of the electron-donating group. J Mater Chem 16(34):3512–3520

    Article  CAS  Google Scholar 

  6. Cocchi M et al (2007) N∧ C∧ n-coordinated platinum (II) complexes as phosphorescent emitters in high-performance organic light-emitting devices. Adv Func Mater 17(2):285–289

    Article  CAS  Google Scholar 

  7. Kim S-K et al (2007) New deep-blue emitting materials based on fully substituted ethylene derivatives. J Mater Chem 17(44):4670–4678

    Article  CAS  Google Scholar 

  8. Wen S-W, Lee M-T, Chen CH (2005) Recent development of blue fluorescent OLED materials and devices. J Disp Technol 1(1):90–99

    Article  CAS  Google Scholar 

  9. Sonntag M, Strohriegl P (2004) Novel 2, 7-linked carbazole trimers as model compounds for conjugated carbazole polymers. Chem Mater 16(23):4736–4742

    Article  CAS  Google Scholar 

  10. Kyushin S, Suzuki Y (2022) Cooperation of σ–π and σ*–π* conjugation in the UV/Vis and fluorescence spectra of 9, 10-disilylanthracene. Molecules 27(7):2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maeda H et al (2001) UV absorption and fluorescence properties of pyrene derivatives having trimethylsilyl, trimethylgermyl, and trimethylstannyl groups. Chem Lett 30(12):1224–1225

    Article  Google Scholar 

  12. Kyushin S, Matsuura T, Matsumoto H (2006) 2, 3, 4, 5-Tetrakis (dimethylsilyl) thiophene: The First 2, 3, 4, 5-Tetrasilylthiophene. Organometallics 25(11):2761–2765

    Article  CAS  Google Scholar 

  13. Shimizu M et al (2006) Preparation, structure, and properties of tris (trimethylsilyl) silyl-substituted anthracenes: Realization of ideal conformation for σ–π conjugation involving eclipse of Si–Si σ-bond with p-orbital of aromatic ring. Chem Lett 35(9):1022–1023

    Article  CAS  Google Scholar 

  14. Tsurusaki A, Kobayashi A, Kyushin S (2017) Synthesis, structures, and electronic properties of dithienosiloles bearing bulky aryl groups: Conjugation between a π-electron system and “perpendicular” aryl groups. Asian J Org Chem 6(6):737–745

    Article  CAS  Google Scholar 

  15. Haruki R et al (2020) Lea** across the visible range: near-infrared-to-violet photon upconversion employing a silyl-substituted anthracene. Chem Commun 56(51):7017–7020

    Article  CAS  Google Scholar 

  16. Turro NJ, Ramamurthy V, Scaiano JC (2010) Modern molecular photochemistry of organic molecules, vol 188. University Science Books Sausalito, CA

    Google Scholar 

  17. Hriz K et al (2012) Synthesis and characterization of new anthracene-based semi-conducting materials. J Mater Sci 47:8067–8075

    Article  CAS  Google Scholar 

  18. Bouzzine S et al (2008) Bridging effect on structural and optoelectronic properties of oligothiophene. J Mol Struct (Thoechem) 851(1–3):254–262

    Article  CAS  Google Scholar 

  19. Ahn T-S et al (2008) Experimental and theoretical study of temperature dependent exciton delocalization and relaxation in anthracene thin films. J Chem Phys 128(5):054505

    Article  PubMed  Google Scholar 

  20. Raghunath P et al (2006) Electronic properties of anthracene derivatives for blue light emitting electroluminescent layers in organic light emitting diodes: a density functional theory study. J Phys Chem A 110(3):1152–1162

    Article  CAS  PubMed  Google Scholar 

  21. Allouche AR (2011) Gabedit—A graphical user interface for computational chemistry softwares. J Comput Chem 32(1):174–182

    Article  CAS  PubMed  Google Scholar 

  22. Frisch M (2009) gaussian09. http://www.gaussian.com/

  23. Yang Y et al (2006) First-principle band structure calculations of tris (8-hydroxyquinolinato) aluminum. J Phys Chem B 110(7):3180–3184

    Article  CAS  PubMed  Google Scholar 

  24. Lin BC et al (2005) Charge transport properties of tris (8-hydroxyquinolinato) aluminum (III): Why it is an electron transporter. J Am Chem Soc 127(1):66–67

    Article  CAS  PubMed  Google Scholar 

  25. Deng W-Q et al (2015) Quantitative prediction of charge mobilities of π-stacked systems by first-principles simulation. Nat Protoc 10(4):632–642

    Article  CAS  PubMed  Google Scholar 

  26. Bouas-Laurent H et al (2001) Photodimerization of anthracenes in fluid solutions:(part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavagePart 1: see H. Bouas-Laurent, A. Castellan, J.-P. Desvergne and R. Lapouyade, Chem. Soc. Rev., 2000, 29, 43. Chem Soc Rev 30(4):248–263. Castellan A, Desvergne J-P, Lapouyade R (2001) Photodimerization of anthracenes in fluid solutions:(part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavagePart 1: see H. Bouas-Laurent, A. Castellan, J.-P. Desvergne and R. Lapouyade, Chem. Soc. Rev., 2000, 29, 43. Chem Soc Rev 30(4):248–263

  27. Khoee S, Zamani S (2007) Synthesis, characterization and fluorimetric studies of novel photoactive poly (amide-imide) from anthracene 9-carboxaldehyde and 4, 4′-diaminodiphenyl ether by microwave irradiation. Eur Polymer J 43(5):2096–2110

    Article  CAS  Google Scholar 

  28. Shiraishi Y, Sumiya S, Hirai T (2011) Highly sensitive cyanide anion detection with a coumarin–spiropyran conjugate as a fluorescent receptor. Chem Commun 47(17):4953–4955

    Article  CAS  Google Scholar 

  29. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer

  30. Valeur B (2002) Effect of polarity on fluorescence emission. Principles and Applications, Wiley-VCH Verlag GmbH, Weinheim, Polarity probes. Molecular Fluorescence

    Google Scholar 

  31. Rusu E, Airinei A, Tigoianu R (2011) Quenching of tryptophan and 4, 4′-diaminostilbene fluorescence by dinitrophenyl ethers: Use of 1-allyloxy-2, 4-dinitrobenzene, as a quencher. Rom Biotechnol Lett 16:130–140

    CAS  Google Scholar 

  32. Katz A et al (2011) Fluorescence of influenza hemagglutinin surface protein. In Frontiers in Optics. Optica Publishing Group

  33. Yang JD et al (2007) Fluorescence quenching of serum albumin by rifamycin antibiotics and their analytical application. Lumin: J Biol Chem Lumin 22(6):559–566

    Google Scholar 

  34. Hu Y-J et al (2006) Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photochem Photobiol A: Chem 179(3):324–329. Liu Y et al (2006) Spectroscopic studies on the interaction between methylene blue and bovine serum albumin. J Photochem Photobiol A: Chem 179(3):324–329

  35. Tablet C, Hillebrand M (2007) Quenching of the fluorescence of 3-carboxy-5, 6-benzocoumarin by aromatic amines. J Photochem Photobiol, A 189(1):73–79

    Article  CAS  Google Scholar 

  36. Hanagodimath S, Evale BG, Manohara S (2009) Nonlinear fluorescence quenching of newly synthesized coumarin derivative by aniline in binary mixtures. Spectrochim Acta Part A: Mol Biomol Spectrosc 74(4):943–948. Evale BG, Manohara S (2009) Nonlinear fluorescence quenching of newly synthesized coumarin derivative by aniline in binary mixtures. Spectrochim Acta Part A: Mol Biomol Spectrosc 74(4):943–948

  37. Airinei A et al (2011) Fluorescence quenching of anthracene by nitroaromatic compounds. Dig J Nanomater Biostruct 6(3):1265–1272

    Google Scholar 

  38. Lee SH et al (2018) Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int Ed 57(27):7958–7985

    Article  CAS  Google Scholar 

  39. Banerjee P et al (2011) Fluorescence resonance energy transfer: a promising tool for investigation of the interaction between 1-anthracene sulphonate and serum albumins. J Lumin 131(2):316–321

    Article  CAS  Google Scholar 

  40. Kaur N (2022) Anthraquinone appended chemosensors for fluorescence monitoring of anions and/or metal ions. Inorganica Chim Acta 120917

  41. De Silva A, Tecilla P (2005) Fluorescent sensors guest editor issue. J Mater Chem 15:2637–2639

    Article  Google Scholar 

  42. Nguyen QPB, Kim J-N, Kim T-H (2009) Investigation of isomerism in anthracene-isothiouronium salts and application of these salts for anion sensing. Bull Korean Chem Soc 30(9):2093–2097

    Article  CAS  Google Scholar 

  43. Ahmed N et al (2012) A highly selective fluorescent chemosensor for guanosine-5′-triphosphate via excimer formation in aqueous solution of physiological pH. Chem Commun 48(21):2662–2664

    Article  CAS  Google Scholar 

  44. Gunnlaugsson T et al (2002) Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors. Org Lett 4(15):2449–2452

    Article  CAS  PubMed  Google Scholar 

  45. Sarkar AR (2011) Anthracene-based hetero bisamide chemosensor in fluorescence sensing of monocarboxylates over monocarboxylic acids. Supramol Chem 23(7):539–549

    Article  Google Scholar 

  46. Jun EJ et al (2006) Anthracene derivatives bearing thiourea group as fluoride selective fluorescent and colorimetric chemosensors. Tetrahedron Lett 47(18):3103–3106

    Article  CAS  Google Scholar 

  47. Xu Z et al (2007) A highly selective fluorescent chemosensor for dihydrogen phosphate via unique excimer formation and PET mechanism. Tetrahedron Lett 48(22):3797–3800

    Article  CAS  Google Scholar 

  48. Gong W-T, Hiratani K (2008) A novel amidepyridinium-based tripodal fluorescent chemosensor for phosphate ion via binding-induced excimer formation. Tetrahedron Lett 49(39):5655–5657

    Article  CAS  Google Scholar 

  49. Tang CW (2002) Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Appl Phys Lett 80(17):3201–3203

    Article  Google Scholar 

  50. Anand T et al (2015) Aminobenzohydrazide based colorimetric and ‘turn-on’fluorescence chemosensor for selective recognition of fluoride. Anal Chim Acta 876:1–8

    Article  CAS  PubMed  Google Scholar 

  51. Huang X-H et al (2008) Novel chiral fluorescent chemosensors for malate and acidic amino acids based on two-arm thiourea and amide. Can J Chem 86(2):170–176

    Article  CAS  Google Scholar 

  52. Kim J et al (2009) Substituted position effect on twisted intramolecular charge transfer of 1-and 2-anthracene aromatic carboxamides as chemosensors based on linear polyether. Anal Sci 25(11):1319–1325

    Article  CAS  PubMed  Google Scholar 

  53. Shao M et al (2010) Biscrown-annulated TTFAQ− dianthracene hybrid: Synthesis, structure, and metal ion sensing. Org Lett 12(13):3050–3053

    Article  CAS  PubMed  Google Scholar 

  54. Şahin Ö et al (2013) A new anthracene derivative of calix [4] arene as a fluorescent chemosensor. Turk J Chem 37(5):832–839

    Article  Google Scholar 

  55. Jiang X-J et al (2013) Two new isomerous fluorescent chemosensors for Al3+ based on photoinduced electron transfer. Spectrochim Acta Part A Mol Biomol Spectrosc 115:26–32

    Article  CAS  Google Scholar 

  56. Shin H et al (2022) A colorimetric and fluorescence “turn-on” sensor for Fe (III) ion based on imidazole-functionalized polydiacetylene. Sens Actuators, B Chem 350:130885

    Article  CAS  Google Scholar 

  57. Kobayashi K et al (1993) Hydrogen-bonded network formation in organic crystals as effected by perpendicular and divergent hydroxyl groups: The crystal structure of a bisresorcinol derivative of anthracene. Tetrahedron Lett 34(49):7929–7932

    Article  CAS  Google Scholar 

  58. Dong X et al (2015) Anthracene-Fe3+ ensemble based turn-on fluorescent probes for selective detection of fluoride. J Fluorine Chem 178:61–67

    Article  CAS  Google Scholar 

  59. Nawar AM, Yahia I (2017) Fabrication and characterization of anthracene thin films for wide-scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt Mater 70:1–10

    Article  CAS  Google Scholar 

  60. Jiang L et al (2009) High-performance organic single-crystal transistors and digital inverters of an anthracene derivative. Adv Mater 21(36):3649–3653

    Article  CAS  Google Scholar 

  61. Zhao Y et al (2017) A thermally stable anthracene derivative for application in organic thin film transistors. Org Electron 43:105–111

    Article  CAS  Google Scholar 

  62. Iwaura R, Ohnishi-Kameyama M, Iizawa T (2009) Construction of helical j-aggregates self-assembled from a thymidylic acid appended anthracene dye and DNA as a template. Chem–A Eur J 15(15):3729–3735

    Article  CAS  Google Scholar 

  63. Prabhu J, Velmurugan K, Nandhakumar R (2015) Development of fluorescent lead II sensor based on an anthracene derived chalcone. Spectrochim Acta Part A Mol Biomol Spectrosc 144:23–28

    Article  CAS  Google Scholar 

  64. Basheer M et al (2007) Design and synthesis of squaraine based near infrared fluorescent probes. Tetrahedron 63(7):1617–1623

    Article  CAS  Google Scholar 

  65. Wang F et al (2013) Zn 2+-induced conformational changes in a binaphthyl-pyrene derivative monitored by using fluorescence and CD spectroscopy. Chem Commun 49(65):7228–7230

    Article  CAS  Google Scholar 

  66. Chen X et al (2012) Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem Soc Rev 41(13):4610–4630

    Article  CAS  PubMed  Google Scholar 

  67. Li J, Yin C, Huo F (2016) Development of fluorescent zinc chemosensors based on various fluorophores and their applications in zinc recognition. Dyes Pigm 131:100–133

    Article  CAS  Google Scholar 

  68. Yoon S et al (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127(46):16030–16031

    Article  CAS  PubMed  Google Scholar 

  69. Jameson DM, Croney JC, Moens PD (2003) [1] Fluorescence: Basic concepts, practical aspects, and some anecdotes. Methods in enzymology. Elsevier, pp 1–43

    Google Scholar 

  70. Malkondu S, Turhan D, Kocak A (2015) Copper (II)-directed static excimer formation of an anthracene-based highly selective fluorescent receptor. Tetrahedron Lett 56(1):162–167

    Article  CAS  Google Scholar 

  71. Ganjali MR et al (2006) Pico level monitoring of silver with modified hexagonal mesoporous compound (MCM-41) and inductively coupled plasma atomic emission spectrometry. Water Air Soil Pollut 173:71–80

    Article  CAS  Google Scholar 

  72. Godoy-Gallardo M et al (2021) Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials 6(12):4470–4490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bhardwaj AK et al (2021) An overview of silver nano-particles as promising materials for water disinfection. Environ Technol Innov 23:101721

    Article  CAS  Google Scholar 

  74. Stafeeva K et al (2012) Ocular argyrosis secondary to long-term ingestion of silver nitrate salts. Clin Ophthalmol 2033–2036

  75. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59(4):587–590

    Article  CAS  PubMed  Google Scholar 

  76. Mohan B et al (2021) 2-((E)-1-((E)-(2-methoxybenzylidene) hydrazono) ethyl) phenol based cost-effective sensor for the selective detection of Eu3+ ions. Polyhedron 209:115460

    Article  Google Scholar 

  77. Kursunlu AN, Ozmen M, Güler E (2019) A novel fluorescent Chemosensor for cu (II) ion: click synthesis of dual-Bodipy including the Triazole groups and bioimaging of yeast cells. J Fluoresc 29:1321–1329

    Article  CAS  PubMed  Google Scholar 

  78. Kaur K et al (2012) Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 256(17–18):1992–2028

    Article  CAS  Google Scholar 

  79. Panchenko PA et al (2021) Ratiometric Detection of Mercury (II) Ions in Living Cells Using Fluorescent Probe Based on Bis (styryl) Dye and Azadithia-15-Crown-5 Ether Receptor. Sensors 21(2):470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oguz M et al (2021) A basket-type fluorescent sensor based calix [4] azacrown ether for multi-analytes: Practicability in living cells and real sample. Microchem J 167:106279

    Article  CAS  Google Scholar 

  81. Cui W et al (2015) A colorimetric and fluorescence “turn-off” chemosensor for the detection of silver ion based on a conjugated polymer containing 2, 3-di (pyridin-2-yl) quinoxaline. Sens Actuators B Chem 207:281–290

    Article  CAS  Google Scholar 

  82. Yin C et al (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohyd Polym 67(2):147–154

    Article  CAS  Google Scholar 

  83. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129(45):13810–13811

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of this article is collective contribution of all authors. They all read and approve the final manuscript of this research article. Sana Islam along with Sadia Asim plays a vital role in collecting data regarding the effect of substitutions, solvents and metal ions on HOMO–LUMO gap of Anthracene. Use of these derivatives as Chemosensors, Biosensors, Metal ions detectors, Voltammetric sensors was collected by Sadia Asim and Asim Mansha. The first draft of manuscript was written by Sana Islam which was later refined by Sadia Asim and Asim Mansha.

Corresponding author

Correspondence to Sadia Asim.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Yes, i got permission.

Consent for Publication

Yes, u can publish it.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Mansha, A. & Asim, S. Effects of Metal Ions and Substituents on HOMO–LUMO Gap Evident from UV–Visible and Fluorescence Spectra of Anthracene Derivatives. J Fluoresc (2023). https://doi.org/10.1007/s10895-023-03482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-023-03482-y

Keywords

Navigation