Log in

Exploration of Optical and Radiative Properties of Fluorinated β-keto Carboxylate Tb3+ Complexes Emanating Cool Green Light

  • RESEARCH
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Tb3+ complexes with β-ketocarboxylic acid as main ligand and heterocyclic systems as auxiliary ligand were synthesized and analyzed to assess their prospective relevance as green light emitting material. The complexes were characterized via various spectroscopic techniques and were found to be stable up to ≈ 200 ℃. Photoluminescent (PL) investigation was performed to assess the emissive nature of complexes. Longest luminescence time of decay (1.34 ms) and highest intrinsic quantum efficiency (63.05%) were fetched for complex T5. Color purity of complexes was found to be in range 97.1 – 99.8% which demonstrated the aptness of these complexes in green color display devices. NIR Absorption spectra were employed to evaluate Judd–Ofelt parameters to appraise the luminous performance and environment encircling Tb3+ ions. The JO parameters were found to follow the order: Ω2 > Ω4 > Ω6 and suggested the higher covalence character in complexes. Theoretical branching ratio in the range 65.32 – 72.68%, large stimulated emission cross section and narrow FWHM for 5D4 → 7F5 transition unlocked the relevance of these complexes as a green color laser media. Band gap and Urbach analysis were consummated via enforcing nonlinear curve fit function on absorption data. Two band gaps with values in between 2.02 – 2.93 eV established the prospective use of complexes in photovoltaic devices. Energies of HOMO and LUMO were estimated employing geometrically optimized structures of complexes. Investigation of biological properties accomplished via antioxidant and antimicrobial assays which communicated their applicability in biomedical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data/Materials

All data analyzed during this study are included in this article and its supplementary information.

References

  1. Jiang X, Jen AK-Y, Huang D et al (2001) The effect of ligand conjugation length on europium complex performance in light-emitting diodes. Synth Met 125:331–336

    Article  Google Scholar 

  2. Liang F, Zhou Q, Cheng Y et al (2003) Oxadiazole-functionalized europium (III) β-diketonate complex for efficient red electroluminescence. Chem Mater 15:1935–1937

    Article  CAS  Google Scholar 

  3. Fu L, Ferreira RAS, Silva NJO et al (2005) Structure–photoluminescence relationship in Eu (III) β-diketonate-based organic–inorganic hybrids. Influence of the synthesis method: Carboxylic acid solvolysis versus conventional hydrolysis. J Mater Chem 15:3117–3125

    Article  CAS  Google Scholar 

  4. Cheng Z, Liu T, Lin H et al (2022) Enhancing the sensitization of Ce3+ on Eu3+ by tri-do** Gd3+ in hexagonal NaYF4. Optik (Stuttg) 253:168593. https://doi.org/10.1016/j.ijleo.2022.168593

    Article  CAS  Google Scholar 

  5. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374

    Article  CAS  PubMed  Google Scholar 

  6. Kuriki K, Koike Y, Okamoto Y (2002) Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem Rev 102:2347–2356

    Article  CAS  PubMed  Google Scholar 

  7. Akerboom S, Van Den Elshout J, Mutikainen I et al (2013) 2 Substituted phenanthrolines as antennae in luminescent Eu (III) complexes. Ln complexes as potential phosphors white LEDs 47

  8. Taxak VB, Kumar R, Makrandi JK, Khatkar SP (2010) Luminescent properties of europium and terbium complexes with 2′-hydroxy-4′,6′-dimethoxyacetophenone. Displays 31:116–121. https://doi.org/10.1016/j.displa.2010.02.007

    Article  CAS  Google Scholar 

  9. Ahmad Bhat S, Iftikhar K (2021) Optical properties of new terbium(III) ternary complexes containing anionic 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and neutral sensitizers in solution, solid and PMMA thin films: Intra and interphase colour tuning. Photochem Photobiol 97:688–699. https://doi.org/10.1111/php.13382

    Article  CAS  PubMed  Google Scholar 

  10. Tanış E (2022) Optical and photonic properties dependence on HNMB solvents: An emitter molecule for OLEDs. Optik (Stuttg) 252:168576. https://doi.org/10.1016/j.ijleo.2022.168576

    Article  CAS  Google Scholar 

  11. Bala M, Kumar S, Boora P et al (2014) Enhanced optoelectronics properties of europium(III) complexes with β-diketone and nitrogen heterocyclic ligands. J Mater Sci Mater Electron 25:2850–2856. https://doi.org/10.1007/s10854-014-1951-x

    Article  CAS  Google Scholar 

  12. Khatri S, Bala M, Kumari P et al (2022) Optical and photophysical portrayal of Sm3+ complexes possessing two band gaps for relevance in solar cells and photovoltaic devices. J Mol Struct 1260:132847

    Article  CAS  Google Scholar 

  13. Khatri S, Bala M, Kumari P et al (2022) Judd-Ofelt, optical and photophysical analysis of β-ketocarboxylate Sm (III) complexes with N-donor aromatic system as secondary sensitizers. Opt Mater (Amst) 128:112463

    Article  CAS  Google Scholar 

  14. Nakamura K, Hasegawa Y, Kawai H et al (2006) High lasing oscillation efficiency of Eu(III) complexes having remarkably sharp emission band. J Alloys Compd 408–412:771–775. https://doi.org/10.1016/j.jallcom.2004.12.144

    Article  CAS  Google Scholar 

  15. Hooda P, Taxak VB, Malik RK et al (2021) Designing of emerald terbium (III) ions with β-ketocarboxylic acid and heterocyclic ancillary ligands for biological and optoelectronic applications. Luminescence 36:1658–1670

    Article  CAS  PubMed  Google Scholar 

  16. Bala M, Kumar S, Priti VBT, Khatkar BSP (2016) Terbium ( III ) complexes sensitized with b -diketone and ancillary ligands : Synthesis, elucidation of photoluminescence properties and mechanism. J Mater Sci Mater Electron 27:9306–9313. https://doi.org/10.1007/s10854-016-4970-y

    Article  CAS  Google Scholar 

  17. Jug M, Mura PA (2018) Grinding as solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state. Pharmaceutics 10:189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sadeek SA, El-Shwiniy WH, El-Attar MS (2011) Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 84:99–110. https://doi.org/10.1016/j.saa.2011.09.010

    Article  CAS  Google Scholar 

  19. Soayed AA, Refaat HM, El-Din DAN (2013) Metal complexes of moxifloxacin–imidazole mixed ligands: Characterization and biological studies. Inorganica Chim Acta 406:230–240. https://doi.org/10.1016/j.ica.2013.04.040

    Article  CAS  Google Scholar 

  20. Khatri S, Hooda P, Ahlawat P et al (2022) Optoelectronic and biological quantification of semi-conducting, crimson europium chelates with fluorinated β-keto acid and N-donor ancillary ligands. Res Chem Intermed 48:1685–1716

    Article  CAS  Google Scholar 

  21. Hooda P, Taxak VB, Malik RK, Khatri S, Kumari P, Khatkar SP, Kumar R (2022) Applicability of reddish-orange light emitting samarium (III) complexes for biomedical and multifunctional optoelectronic devices. J Fluoresc 32:613–627. https://doi.org/10.1007/s10895-021-02887-x

    Article  CAS  PubMed  Google Scholar 

  22. Sagdinc S, Bayari S (2004) Spectroscopic studies on the interaction of ofloxacin with metals. J Mol Struct 691:107–113. https://doi.org/10.1016/j.molstruc.2003.11.053

    Article  CAS  Google Scholar 

  23. Anacona JR, Rodriguez I (2004) Synthesis and antibacterial activity of cephalexin metal complexes. J Coord Chem 57:1263–1269

    Article  CAS  Google Scholar 

  24. Patel MN, Bhatt BS, Dosi PA (2012) Topoisomerase inhibition, nucleolytic and electrolytic contribution on DNA binding activity exerted by biological active analogue of coordination compounds. Appl Biochem Biotechnol 166:1949–1968

    Article  CAS  PubMed  Google Scholar 

  25. Dorofeev VL (2004) Infrared spectra and the structure of drugs of the fluoroquinolone group. Pharm Chem J 38:693–697. https://doi.org/10.1007/s11094-005-0063-6

    Article  CAS  Google Scholar 

  26. Chhibber T, Gondil VS, Sinha VR (2020) Development of Chitosan-Based Hydrogel Containing Antibiofilm Agents for the Treatment of Staphylococcus aureus–Infected Burn Wound in Mice. AAPS PharmSciTech 21:1–12

    Article  Google Scholar 

  27. Khanagwal J, Khatkar SP, Dhankhar P et al (2020) Synthesis and photoluminescence analysis of europium (III) complexes with pyrazole acid and nitrogen containing auxiliary ligands. Spectrosc Lett 53:625–647

    Article  CAS  Google Scholar 

  28. Sadeek SA, El-Shwiniy WH, El-Attar MS (2011) Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes. Spectrochim Acta - Part A Mol Biomol Spectrosc 84:99–110. https://doi.org/10.1016/j.saa.2011.09.010

    Article  CAS  Google Scholar 

  29. Sadeek SA, Refat MS, Teleb SM, El-Megharbel SM (2005) Synthesis and characterization of V(III), Cr(III) and Fe(III) hippurates. J Mol Struct 737:139–145. https://doi.org/10.1016/j.molstruc.2004.10.017

    Article  CAS  Google Scholar 

  30. Liu J-Y, Ren N, Zhang J-J, Zhang C-Y (2013) Preparation, thermodynamic property and antimicrobial activity of some rare-earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1, 10-phenanthroline. Thermochim Acta 570:51–58

    Article  CAS  Google Scholar 

  31. Taha ZA, Ajlouni AM, Al Momani W (2012) Structural, luminescence and biological studies of trivalent lanthanide complexes with N, N′-bis (2-hydroxynaphthylmethylidene)-1, 3-propanediamine Schiff base ligand. J Lumin 132:2832–2841

    Article  CAS  Google Scholar 

  32. Sahu J, Kumar S, Vats VS et al (2022) Lattice defects and oxygen vacancies formulated ferromagnetic, luminescence, structural properties and band-gap tuning in Nd3+ substituted ZnO nanoparticles. J Lumin 243:118673

    Article  CAS  Google Scholar 

  33. Carnall WT (1979) The absorption and fluorescence spectra of rare earth ions in solution. Handb Phys Chem rare earths 3:171–208

    Article  CAS  Google Scholar 

  34. Sizov VS, Komissar DA, Metlina DA et al (2020) Effect of ancillary ligands on visible and NIR luminescence of Sm3+ β-diketonate complexes. Spectrochim Acta - Part A Mol Biomol Spectrosc 225:117503. https://doi.org/10.1016/j.saa.2019.117503

    Article  CAS  Google Scholar 

  35. Carnall WT, Crosswhite H, Crosswhite HM (1978) Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3. Argonne National Lab.(ANL), Argonne, IL (United States)

  36. Agarwal A, Pal I, Sanghi S, Aggarwal MP (2009) Judd-Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses. Opt Mater (Amst) 32:339–344

    Article  CAS  Google Scholar 

  37. Khatri S, Bala M, Hooda P et al (2022) Utilization of Judd-Ofelt theory to assess the photophysical properties of β-keto carboxylate Tb (III) complexes with heterocyclic secondary sensitizer. Opt Mater (Amst) 131:112629

    Article  CAS  Google Scholar 

  38. Hooda P, Taxak VB, Malik RK et al (2022) Augmentation of photophysical features and Judd–Ofelt analysis of extensively green glowing terbium (III) complexes with nitrogen donor ancillary ligands. Photochem Photobiol Sci 1–24

  39. Jamalaiah BC, Suresh Kumar J, Mohan Babu A et al (2009) Study on spectroscopic and fluorescence properties of Tb3+-doped LBTAF glasses. Phys B Condens Matter 404:2020–2024. https://doi.org/10.1016/j.physb.2009.03.037

    Article  CAS  Google Scholar 

  40. Jamalaiah BC, Vijaya Kumar MV, Rama Gopal K (2011) Investigation on luminescence and energy transfer in Tb3-doped lead telluroborate glasses. Phys B Condens Matter 406:2871–2875. https://doi.org/10.1016/j.physb.2011.04.051

    Article  CAS  Google Scholar 

  41. Liang H, **e F (2009) Optical investigation of Sm(III)-β-diketonate complexes with different neutral ligands. Spectrochim Acta - Part A Mol Biomol Spectrosc 73:309–312. https://doi.org/10.1016/j.saa.2009.02.031

    Article  CAS  Google Scholar 

  42. Monteiro JHSK, Mazali IO, Sigoli FA (2011) Determination of Judd-Ofelt intensity parameters of pure samarium(III) complexes. J Fluoresc 21:2237–2243. https://doi.org/10.1007/s10895-011-0928-x

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Geng Y, Li D et al (2020) Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum. Adv Mater 32:1906641

    Article  CAS  Google Scholar 

  44. Wang X, Sun K, Wang L et al (2012) Effect on the fluorescence branching ratio of different synergistic ligands in neodymium complex doped PMMA. J Non Cryst Solids 358:1506–1510

    Article  CAS  Google Scholar 

  45. Abdul Azeem P, Kalidasan M, Reddy RR, Ramagopal K (2012) Spectroscopic investigations on Tb 3 doped lead fluoroborate glasses. Opt Commun 285:3787–3791. https://doi.org/10.1016/j.optcom.2012.05.034

    Article  CAS  Google Scholar 

  46. Umamaheswari D, Jamalaiah BC, Sasikala T et al (2012) Photoluminescence and decay behavior of Tb 3+ ions in sodium fluoro-borate glasses for display devices. J Lumin 132:1166–1170. https://doi.org/10.1016/j.jlumin.2011.12.080

    Article  CAS  Google Scholar 

  47. Kumar A, Sahu MK, Dahiya S et al (2022) Spectral characteristics of Tb3+ doped ZnF2–K2O–Al2O3–B2O3 glasses for epoxy free tricolor w-LEDs and visible green laser applications. J Lumin 244:118676

    Article  CAS  Google Scholar 

  48. Xu J, Zhang Y, Chen H et al (2014) Efficient visible and near-infrared photoluminescent attapulgite-based lanthanide one-dimensional nanomaterials assembled by ion-pairing interactions. Dalt Trans 43:7903–7910

    Article  CAS  Google Scholar 

  49. Shi P, Chen Z, **ong G et al (2012) Structures, luminescence, and magnetic properties of several three-dimensional lanthanide–organic frameworks comprising 4-carboxyphenoxy acetic acid. Cryst Growth Des 12:5203–5210

    Article  CAS  Google Scholar 

  50. Zhou Y, Guo Y, Xu S et al (2013) Photoluminescent 3D lanthanide-organic frameworks based on 2, 5-Dioxo-1, 4-piperazinylbis (methylphosphonic) acid formed via in situ cyclodehydration of glyphosates. Inorg Chem 52:6338–6345

    Article  CAS  PubMed  Google Scholar 

  51. Langyan R, Chauhan A, Dhania SL (2021) Photophysical properties of highly green luminescent Tb (III) complexes. Optik (Stuttg) 247:168008

    Article  CAS  Google Scholar 

  52. Khanagwal J, Kumar R, Devi R et al (2021) Photoluminescence performance of green light emitting terbium (III) complexes with β-hydroxy ketone and nitrogen donor ancillary ligands. Luminescence 36:742–754. https://doi.org/10.1002/bio.3998

    Article  CAS  PubMed  Google Scholar 

  53. Ilmi R, Iftikhar K (2015) Optical emission studies of new europium and terbium dinuclear complexes with trifluoroacetylacetone and bridging bipyrimidine. Fast radiation and high emission quantum yield. Polyhedron 102:16–26. https://doi.org/10.1016/j.poly.2015.07.046

    Article  CAS  Google Scholar 

  54. Richards G, Osterwyk J, Flikkema J et al (2008) Monometallic and bimetallic europium(III) and terbium(III) complexes: Synthesis and luminescent properties. Inorg Chem Commun 11:1385–1387. https://doi.org/10.1016/j.inoche.2008.09.011

    Article  CAS  Google Scholar 

  55. Khanagwal J, Kumar R, Bedi M et al (2021) Enhanced optoelectronic and biological potential of virescent-glowing terbium (III) complexes with pyrazole acid. J Electron Mater 50:2656–2668

    Article  CAS  Google Scholar 

  56. Schubert EF (2018) Light-emitting diodes. E. Fred Schubert

  57. Khursheed S, Biswas P, Singh VK et al (2019) Synthesis and optical studies of KCaVO4: Sm3+/PMMA nanocomposites. Vacuum 159:414–422

    Article  CAS  Google Scholar 

  58. Hooda A, Dalal A, Nehra K et al (2022) Preparation and optical investigation of green luminescent ternary terbium complexes with aromatic β-diketone. Chem Phys Lett 794:139495. https://doi.org/10.1016/j.cplett.2022.139495

    Article  CAS  Google Scholar 

  59. Hooda A, Nehra K, Dalal A et al (2022) Terbium complexes of an asymmetric β-diketone: Preparation, photophysical and thermal investigation. Inorganica Chim Acta 536:120881. https://doi.org/10.1016/j.ica.2022.120881

    Article  CAS  Google Scholar 

  60. Ahlawat P, Bhayana S, Lather V et al (2022) Judd-Ofelt, urbach energy and geometrical optimization study of orange light emitting samarium (III) complexes with heterocyclic ligands for application in optoelectronic devices. Opt Mater (Amst) 133:112940

    Article  CAS  Google Scholar 

  61. Francis B, Raj DBA, Reddy MLP (2010) Highly efficient luminescent hybrid materials covalently linking with europium (III) complexes via a novel fluorinated β-diketonate ligand: synthesis, characterization and photophysical properties. Dalt Trans 39:8084–8092

    Article  CAS  Google Scholar 

  62. Xu H, Yin K, Huang W (2010) Synthesis, photophysical and electroluminescent properties of a novel bright light-emitting Eu3+ complex based on a fluorene-containing bidentate aryl phosphine oxide. Synth Met 160:2197–2202

    Article  CAS  Google Scholar 

  63. Taha ZA, Ajlouni AM, Al-Hassan KA et al (2011) Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1, 3-propylenediimine Schiff base ligand and its lanthanide complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 81:317–323

    Article  CAS  Google Scholar 

  64. Gawryszewska P, Sokolnicki J, Legendziewicz J (2005) Photophysics and structure of selected lanthanide compounds. Coord Chem Rev 249:2489–2509

    Article  CAS  Google Scholar 

  65. Greenham NC, Samuel IDW, Hayes GR et al (1995) Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem Phys Lett 241:89–96

    Article  CAS  Google Scholar 

  66. Hooda P, Lather V, Malik RK et al (2022) Judd-Ofelt analysis of warm reddish orange light emanating samarium (III) complexes possessing two band gaps. J Mol Struct 133423

  67. Kumari P, Lather V, Khatri S et al (2022) Computational analysis, Urbach energy and Judd-Ofelt parameter of warm Sm 3+ complexes having applications in photovoltaic and display devices. RSC Adv 12:35827–35848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Francis B, Heering C, Freire RO et al (2015) Achieving visible light excitation in carbazole-based Eu 3+–β-diketonate complexes via molecular engineering. RSC Adv 5:90720–90730

    Article  CAS  Google Scholar 

  69. Fratini A, Richards G, Larder E, Swavey S (2008) Neodymium, gadolinium, and terbium complexes containing hexafluoroacetylacetonate and 2, 2 ‘-bipyrimidine: structural and spectroscopic characterization. Inorg Chem 47:1030–1036

    Article  CAS  PubMed  Google Scholar 

  70. Sehrawat P, Khatkar A, Boora P et al (2020) Combustion derived color tunable Sm3+ activated BaLaAlO4 nanocrystals for various innovative solid state illuminants. Chem Phys Lett 758:137937

    Article  CAS  Google Scholar 

  71. Dhayal V, Hashmi SZ, Kumar U et al (2021) Optical and electrical properties of biocompatible and novel (CS–GO) polymer nanocomposites. Opt Quantum Electron 53:1–13. https://doi.org/10.1007/s11082-020-02723-9

    Article  CAS  Google Scholar 

  72. Khakhal HR, Kumar S, Dolia SN et al (2020) Oxygen vacancies and F+ centre tailored room temperature ferromagnetic properties of CeO2 nanoparticles with Pr do** concentrations and annealing in hydrogen environment. J Alloys Compd 844:156079

    Article  CAS  Google Scholar 

  73. Khichar KK, Dangi SB, Dhayal V et al (2020) Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym Compos 41:2792–2802. https://doi.org/10.1002/pc.25576

    Article  CAS  Google Scholar 

  74. Licht S (2001) Multiple band gap semiconductor/electrolyte solar energy conversion. J Phys Chem B 105:6281–6294. https://doi.org/10.1021/jp010552j

    Article  CAS  Google Scholar 

  75. Henry CH (1980) Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J Appl Phys 51:4494–4500

    Article  CAS  Google Scholar 

  76. White JR, Fan FF, Bard AJ (1985) Semiconductor electrodes: LVI. Principles of multijunction electrodes and photoelectrosynthesis at Texas instruments’p/n‐Si solar arrays. J Electrochem Soc 132:544

  77. Park CH, Kim JG, Jung S-G et al (2019) Optical characteristics of refractive-index-matching diffusion layer in organic light-emitting diodes. Sci Rep 9:1–10

    Google Scholar 

  78. Kumar M, Khatri S, Ahlawat P et al (2022) Optical and computational analysis of red light emitting Eu (III) complexes for applications in luminescent devices. Opt Mater (Amst) 134:113095

    Article  CAS  Google Scholar 

  79. Ahlawat P, Bhayana S, Khatri S et al (2022) Study of Judd–Ofelt, Urbach energy and photosensitization process in luminescent Sm(III) complexes with heterocyclic ligands. Photochem Photobiol Sci. https://doi.org/10.1007/s43630-022-00323-y

    Article  PubMed  Google Scholar 

  80. Bala M, Agrohiya S, Dahiya S et al (2020) Effect of replacement of Bi2O3 by Li2O on structural, thermal, optical and other physical properties of zinc borate glasses. J Mol Struct 1219:128589

    Article  CAS  Google Scholar 

  81. Borah M, Mohanta D (2014) Effect of Gd3+ do** on structural, optical and frequency-dependent dielectric response properties of pseudo-cubic BaTiO 3 nanostructures. Appl Phys A Mater Sci Process 115:1057–1067. https://doi.org/10.1007/s00339-013-7941-7

    Article  CAS  Google Scholar 

  82. Kumari P, Baitha PK, Manam J (2015) Structural and photoluminescence properties of red-light emitting YVO4:Eu3+ phosphor synthesized by combustion and solid-state reaction techniques: a comparative study. Indian J Phys 89:1297–1306. https://doi.org/10.1007/s12648-015-0712-x

    Article  CAS  Google Scholar 

  83. Hanwell MD, Curtis DE, Lonie DC et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:1–17

    Article  Google Scholar 

  84. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113

    Article  Google Scholar 

  85. Nandal P, Khatkar SP, Kumar R et al (2017) Synthesis, optical investigation and biological properties of europium(III) complexes with 2-(4-chlorophenyl)-1-(2-hydroxy-4-methoxyphenyl)ethan-1-one and ancillary ligands. J Fluoresc 27:1–11. https://doi.org/10.1007/s10895-016-1930-0

    Article  CAS  PubMed  Google Scholar 

  86. Nandal P, Kumar R, Khatkar A et al (2016) Synthesis, characterization, enhanced photoluminescence, antimicrobial and antioxidant activities of novel Sm(III) complexes containing 1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone and nitrogen containing ancillary ligands. J Mater Sci Mater Electron 27:878–885. https://doi.org/10.1007/s10854-015-3829-y

    Article  CAS  Google Scholar 

  87. Ajlouni AM, Abu-Salem Q, Taha ZA et al (2016) Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene) hydrazide] Schiff bases ligand. J rare earths 34:986–993

    Article  CAS  Google Scholar 

  88. Tümer M, Köksal H, Sener MK, Serin S (1999) Antimicrobial activity studies of the binuclear metal complexes derived from tridentate Schiff base ligands. Transit Met Chem 24:414–420

    Article  Google Scholar 

  89. Imran M, Iqbal J, Iqbal S, Ijaz N (2007) In vitro antibacterial studies of ciprofloxacin-imines and their complexes with Cu (II), Ni (II), Co (II), and Zn (II). Turkish J Biol 31:67–72

    CAS  Google Scholar 

  90. Patel MN, Gandhi DS, Parmar PA (2012) DNA interaction and in-vitro antibacterial studies of fluoroquinolone based platinum(II) complexes. Inorg Chem Commun 15:248–251. https://doi.org/10.1016/j.inoche.2011.10.037

    Article  CAS  Google Scholar 

Download references

Funding

Savita Khatri, One of the authors appraises the monetary assistance from Radhakrishnan Foundation, Maharshi Dayanand University, Rohtak, India, in the form of a Minor research project (Award No: DSW/2020/430) to complete this research work.

Author information

Authors and Affiliations

Authors

Contributions

Savita Khatri performed Experimental works, conceptualisation, data collection, analysis, interpretation writting original manuscript; Deepanita Khatri and Vaishnavi Lather helped in review and editing of Biological properties; Yudhvir Singh contributed to software validation; Poonam Kumari contributed to reviewing and editing the manuscript. V.B. Taxak and S. P. Khatkar contributed to review, visualisation and supervision. Rajesh Kumar contributed to supervision, technical support, editing functions and manuscript review.

Corresponding author

Correspondence to Rajesh Kumar.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 960 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, S., Khatri, D., Lather, V. et al. Exploration of Optical and Radiative Properties of Fluorinated β-keto Carboxylate Tb3+ Complexes Emanating Cool Green Light. J Fluoresc 33, 1861–1885 (2023). https://doi.org/10.1007/s10895-023-03177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03177-4

Keywords

Navigation