Log in

Hydromagnetic Oscillatory Reactive Flow through a Porous Channel in a Rotating Frame Subject to Convective Heat Exchange under Arrhenius Kinetics

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper is aimed at studying an unsteady hydromagnetic flow of a viscous incompressible electrically conducting reactive fluid in a permeable channel with asymmetrical convective boundary conditions in a rotating reference frame under the Arrhenius kinetics with neglect of the reactant consumption. Asymmetrical convective heat exchange with the surrounding medium at the channel surfaces follows the Newton law of cooling. A chemical reaction in the flow system is exothermic and assumed to follow the Arrhenius rate law. The heat transfer characteristics of the flow are considered with viscous and Joule dissipations taken into account. The expressions for the velocity components obtained in closed form are used to calculate the wall shear stresses. The energy equation is tackled numerically with using MATLAB. The effects of the pertinent parameters on the flow dynamics are analyzed graphically. The results reveal that the combined effects of magnetic field, rotation, suction/injection, and convective heating substantially affect the flow characteristics in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Berman, Laminar flow in channels with porous walls, J. Appl. Phys., 24, 1232–1235 (1953).

    Article  MathSciNet  Google Scholar 

  2. J. R. Sellars, Laminar flow in channels with porous walls at high suction Reynolds numbers, J. Appl. Phys., 26, 489–490 (1955).

    Article  Google Scholar 

  3. G. Radhakrishnamacharya and M. K. Maiti, Heat transfer to pulsatile flow in a porous channel, Int. J. Heat Mass Transf., 20, 171–173 (1977).

    Article  Google Scholar 

  4. R. Moreau, Magnetohydrodynamics, Kluwer Academic Publishers, Dordrecht (1990).

    Book  Google Scholar 

  5. J. Hartmann, Hg-Dynamics I: Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field, Det. Kgl. Danske Vid. Sels. Math.-Fys. Medd., 15, No. 6, 1–27 (1937).

    Google Scholar 

  6. K. R Cramer and S. I. Pai, Magnetofl uid Dynamics for Engineers and Applied Physicists, McGraw Hill, New York (1973).

  7. H. A. Attia, Effect of Hall current on transient hydromagnetic Couette–Poiseuille flow of a viscoelastic fluid with heat transfer, Appl. Math. Model., 32, 375–388 (2008).

    Article  MathSciNet  Google Scholar 

  8. K. Michaeli, K. S. Tikhonov, and A. M. Finkelstein, Hall effect in superconducting films, Phys. Rev., B86, 014515 (2012).

    Article  Google Scholar 

  9. A. S. Gupta, Heat transfer in hydromagnetic Couette flow with Hall effects, Math. Student, XL, 103–106 (1972).

  10. V. M. Soundalgekar, G. A. Dessai, and A. S. Gupta, Hall effects on generalized MHD Couete fl ow with heat transfer, Bull. Classe Sci., LX, 332–345 (1974).

  11. A. J. Chamkha, Unsteady laminar hydromagnetic flow and heat transfer in porous channels with temperature-dependent properties, Int. J. Numer. Meth. Heat Fluid Flow, 11, 430–448 (2001).

    Article  Google Scholar 

  12. O. A. Bég, J. Zueco, and H. S. Takhar, Unsteady magnetohydrodynamic Hartmann–Couette flow and heat transfer in a Darcian channel with Hall current, ion slip, viscous and Joule heating effects: Network numerical solutions, Commun. Nonlinear Sci. Numer. Simul., 14, 1082–1097 (2009).

    Article  Google Scholar 

  13. O. D. Makinde and T. Chinyoka, Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling, Commun. Nonlinear Sci. Numer. Simul., 15, 3919–3930 (2010).

    Article  Google Scholar 

  14. B. K. Jha and C. A. Apere, Time-dependent MHD Couette flow in a rotating system with suction/injection, Z. Angew. Math. Mech., 91, 832–842 (2011).

    Article  MathSciNet  Google Scholar 

  15. R. N. Jana, N. Datta, and B. S. Mazumder, Magnetohydrodynamic Couette flow and heat transfer in a rotating system, J. Phys. Soc. Jpn., 42, 1034–1039 (1977).

    Article  Google Scholar 

  16. S. K. Ghosh, O. A. Bég, and M. Narahari, Hall effects on MHD flow in a rotating system with heat transfer characteristics, Meccanica, 44, 741–765 (2009).

    Article  MathSciNet  Google Scholar 

  17. G. S. Seth, R. Nandkeolyar, and M. S. Ansari, Hall effects on oscillatory hydromagnetic Couette flow in a rotating system, Int. J. Acad. Res., 1, 6–17 (2009).

    Google Scholar 

  18. S. Das, S. L. Maji, M. Guria, and R. N. Jana, Unsteady MHD Couette flow in a rotating system, Math. Comput. Model., 50, 1211–1217 (2009).

    Article  MathSciNet  Google Scholar 

  19. B. C. Sarkar, S. Das, and R.N. Jana, Combined effects of Hall currents and rotation on steady hydromagnetic Couette flow, Res. J. Appl. Sci. Eng. Technol., 5, No. 6, 1864–1875 (2013).

    Article  Google Scholar 

  20. O. D. Makinde, T. Iskander, F. Maboodc, W. A. Khan, and M. S. Tshehl, MHD Couette–Poiseuille flow of variable viscosity nanofl uids in a rotating permeable channel with Hall effects, J. Mol. Liq., 221, 778–787 (2016).

    Article  Google Scholar 

  21. S. K. Ghosh, MHD rotating fl ow and heat transfer through a channel with Hall effects, J. Magn. Magn. Mater., 404, 221–229 (2016).

    Article  Google Scholar 

  22. A. O. Ali, O. D. Makinde, and Y. Nkansah-Gyekye, Numerical study of unsteady MHD Couette flow and heat transfer of nanofluids in a rotating system with convective cooling, Int. J. Numer. Meth. Heat Fluid Flow, 26, No. 5, 1567 –1579 (2016).

    Article  MathSciNet  Google Scholar 

  23. O. D. Makinde, On thermal stability of a reactive third-grade fl uid in a channel with convective cooling the walls, Appl. Math. Comput., 213, 170–176 (2009).

    MathSciNet  MATH  Google Scholar 

  24. L. Rundora and O. D. Makinde, Analysis of unsteady MHD reactive flow of non-Newtonian fl uid through a porous saturated medium with asymmetric boundary conditions, Iran J. Sci. Technol. Trans. Mech. Eng., 40, 189–201 (2016).

    Article  Google Scholar 

  25. S. Das, R. R. Patra, R. N. Jana, and O. D. Makinde, Hall effects on unsteady MHD reactive flow through a porous channel with convective heating at the Arrhenius reaction rate, J. Eng. Phys. Thermophys., 90, No. 5, 1240–1253 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 3, pp. 722–733, May–June, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Patra, R.R. & Jana, R.N. Hydromagnetic Oscillatory Reactive Flow through a Porous Channel in a Rotating Frame Subject to Convective Heat Exchange under Arrhenius Kinetics. J Eng Phys Thermophy 94, 702–713 (2021). https://doi.org/10.1007/s10891-021-02347-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02347-0

Keywords

Navigation