Log in

Enhanced Cytotoxic Efficacy of Ocimum basilicum Leaf Extract-Mediated TiO2 Nanocrystals

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Breast cancer has become a global health burden, and therefore requires necessitating action against the development of affordable, target-oriented, and safe chemotherapeutic agents to mitigate its prevalence worldwide. In the present report, titanium oxide (TiO2) nanocrystals (NCs) were synthesized using the green route utilizing Ocimum basilicum leaf extract (OBLE). X-ray diffraction (XRD) studies revealed that TiO2 NCs exhibit tetragonal crystal configuration with anatase-type symmetry with \(I{4}_{1/}amd\) space group. The phenolic groups (–OH) present in OBLE were detected as the bend appeared at 3420 cm− 1 in the infrared spectrum. The characteristic hump positioned at 331 nm in the UV–visible diffuse reflectance spectrum (UV–DRS) of biosynthesized TiO2 NCs confirmed the formation of nanoparticles and the optical band gap of TiO2 NCs was found to be 3.41 eV as evaluated from Tauc’s plot. The surface morphology of TiO2 NCs showed minute agglomeration with an average particle size of 11.8 ± 0.66 nm as obtained from statistical analysis of the particle size distribution. The cytotoxic activity of TiO2 NCs was investigated against MDA–MB 231 cancer cells and dose-dependent cell inhibition was observed with a low IC50 value of 13.35 µg/mL after 48 h of incubation time. The present study underscores the remarkable cytotoxicity demonstrated by TiO2 NCs against breast cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Availability of data and materials will be available on request.

References

  1. Ahmad, R., Khatoon, N., & Sardar, M. (2014). Antibacterial effect of green synthesized TiO2 nanoparticles. Advanced Science Letters, 20(7–8), 1616–1620.

    Google Scholar 

  2. Streit, J. M., Fritsche, T. R., Sader, H. S., & Jones, R. N. (2004). Worldwide assessment of dalbavancin activity and spectrum against over 6,000 clinical isolates. Diagnostic Microbiology and Infectious Disease, 48(2), 137–143.

    CAS  PubMed  Google Scholar 

  3. Varma, R. S. (2012). Greener approach to nanomaterials and their sustainable applications. Current Opinion in Chemical Engineering, 1(2), 123–128.

    CAS  Google Scholar 

  4. Jha, A. K., & Prasad, K. (2010). Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnology Journal, 5(3), 285–291.

    CAS  PubMed  Google Scholar 

  5. Naseem, T., & Durrani, T. (2021). The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review. Environmental Chemistry and Ecotoxicology, 3, 59–75.

    CAS  Google Scholar 

  6. Alavi, M., & Varma, R. S. (2021). Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustainable Chemistry and Pharmacy, 21, 100412.

    CAS  Google Scholar 

  7. Govindasamy, G. A., Mydin, R. B. S., Sreekantan, S., & Harun, N. H. (2021). Compositions and antimicrobial properties of binary ZnO–CuO nanocomposites encapsulated calcium and carbon from Calotropis gigantea targeted for skin pathogens. Scientific reports, 11(1), 99.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Govindasamy, G. A., SMN Mydin, R. B., Gadaime, N. K. R., & Sreekantan, S. (2023). Phytochemicals, Biodegradation, Cytocompatibility and Wound Healing Profiles of Chitosan Film Embedded Green Synthesized Antibacterial ZnO/CuO Nanocomposite. Journal of Polymers and the Environment, 1–17.

  9. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242–2250.

    CAS  Google Scholar 

  10. Singh, M. K., & Mehata, M. S. (2019). Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles. Optik, 193, 163011.

    CAS  Google Scholar 

  11. Kreft, S., Wei, D., Junge, H., & Beller, M. (2020). Recent advances on TiO2-based photocatalytic CO2 reduction. EnergyChem, 2(6), 100044.

    Google Scholar 

  12. Kirthi, A. V., Rahuman, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., Jayaseelan, C., & Bagavan, A. (2011). Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Materials Letters, 65(17–18), 2745–2747.

    CAS  Google Scholar 

  13. Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16(1), 1–24.

    Google Scholar 

  14. Khashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & AlObaid, A. A. (2021). Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences, 11(10), 4623.

    CAS  Google Scholar 

  15. Muthee, D. K., & Dejene, B. F. (2021). Effect of annealing temperature on structural, optical, and photocatalytic properties of titanium dioxide nanoparticles. Heliyon, 7(6).

  16. Govindasamy, G. A., Mydin, R. B. S., Harun, N. H., Effendy, W. N. F. W. E., & Sreekantan, S. (2022). Annealing temperature influences the cytocompatibility, bactericidal and bioactive properties of green synthesised TiO2 nanocomposites. Chemical Papers, 76(9), 5369–5388.

    CAS  Google Scholar 

  17. Ikram, M., Hassan, J., Raza, A., Haider, A., Naz, S., Ul-Hamid, A., … Ali, S. (2020). Photocatalytic and bactericidal properties and molecular docking analysis of TiO2 nanoparticles conjugated with Zr for environmental remediation. RSC advances, 10(50), 30007–30024.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ikram, M., Umar, E., Raza, A., Haider, A., Naz, S., Ul-Hamid, A., … Ali, S. (2020). Dye degradation performance, bactericidal behavior and molecular docking analysis of Cu-doped TiO2 nanoparticles. RSC advances, 10(41), 24215–24233.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikram, M., Rasheed, F., Haider, A., Naz, S., Ul-Hamid, A., Shahzadi, A., … Ali, S. (2022). Photocatalytic and antibacterial activity of graphene oxide/cellulose-doped TiO2 quantum dots: in silico molecular docking studies. Nanoscale Advances, 4(18), 3764–3776.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ashfaq, Atif, Muhammad Ikram, Ali Haider, Anwar Ul-Hamid, Iram Shahzadi, and Junaid Haider. Nitrogen and Carbon Nitride-Doped TiO2 for Multiple Catalysis and Its Antimicrobial Activity. Nanoscale Research Letters 16 (2021): 1–15.

    Google Scholar 

  21. Ismael, M. (2020). A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Solar Energy, 211, 522–546.

    CAS  Google Scholar 

  22. Rajakumar, G., Rahuman, A. A., Priyamvada, B., Khanna, V. G., Kumar, D. K., & Su**, P. J. (2012). Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Materials Letters, 68, 115–117.

    CAS  Google Scholar 

  23. Subhapriya, S., & Gomathipriya, P. J. M. P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis, 116, 215–220.

    CAS  PubMed  Google Scholar 

  24. Ansari, A., Siddiqui, V. U., Rehman, W. U., Akram, M. K., Siddiqi, W. A., Alosaimi, A. M., & Rafatullah, M. (2022). Green synthesis of TiO2 nanoparticles using Acorus calamus leaf extract and evaluating its photocatalytic and in vitro antimicrobial activity. Catalysts, 12(2), 181.

    CAS  Google Scholar 

  25. Nabi, G., Ain, Q. U., Tahir, M. B., Nadeem Riaz, K., Iqbal, T., Rafique, M., & Rizwan, M. (2022). Green synthesis of TiO2 nanoparticles using lemon peel extract: their optical and photocatalytic properties. International Journal of Environmental Analytical Chemistry, 102(2), 434–442.

    CAS  Google Scholar 

  26. Maurya, I. C., Singh, S., Senapati, S., Srivastava, P., & Bahadur, L. (2019). Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells. Solar Energy, 194, 952–958.

    CAS  Google Scholar 

  27. Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. International Journal of Food Properties, 23(1), 1961–1970.

    CAS  Google Scholar 

  28. Sharaf, M. H., Abdelaziz, A. M., Kalaba, M. H., Radwan, A. A., & Hashem, A. H. (2022). Antimicrobial, antioxidant, cytotoxic activities and phytochemical analysis of fungal endophytes isolated from ocimum basilicum. Applied Biochemistry and Biotechnology, 194(3), 1271–1289.

    CAS  PubMed  Google Scholar 

  29. Ahmed, A. F., Attia, F. A., Liu, Z., Li, C., Wei, J., & Kang, W. (2019). Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Science and Human Wellness, 8(3), 299–305.

    Google Scholar 

  30. Iqbal, H., Razzaq, A., Uzair, B., Ul Ain, N., Sajjad, S., Althobaiti, N. A., & Menaa, F. (2021). Breast cancer inhibition by biosynthesized titanium dioxide nanoparticles is comparable to free doxorubicin but appeared safer in BALB/c mice. Materials, 14(12), 3155.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Venkatappa, M. M., Udagani, C., Hanume Gowda, S. M., Venkataramaiah, S., Casini, R., Moussa, I. M., & Elansary, H. O. (2023). Green Synthesised TiO2 Nanoparticles-Mediated Terenna asiatica: Evaluation of Their Role in Reducing Oxidative Stress, Inflammation and Human Breast Cancer Proliferation. Molecules, 28(13), 5126.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ul-Hamid, A., Baig, N., Haider, A., Hakeem, A. S., & Ikram, M. (2023). Using biologically synthesized TiO2 nanoparticles as potential remedy against multiple drug resistant Staphylococcus aureus of bovine mastitis. Scientific Reports, 13(1), 18785.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nadeem, H. R., Akhtar, S., Sestili, P., Ismail, T., Neugart, S., Qamar, M., & Esatbeyoglu, T. (2022). Toxicity, antioxidant activity, and phytochemicals of basil (Ocimum basilicum L.) leaves cultivated in Southern Punjab, Pakistan. Foods, 11(9), 1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanafy, Magda S., D. Abdel Fadeel, M. Elywa, and N. Kelany. Green synthesis and characterization of TiO2 nanoparticles using Aloe vera extract at different pH value. Sci J King Faisel Univ 21, no. 1 (2020): 103–10.

    Google Scholar 

  35. Vigneshwaran, R., Ezhilarasan, D., & Rajeshkumar, S. (2021). Inorganic titanium dioxide nanoparticles induces cytotoxicity in colon cancer cells. Inorganic Chemistry Communications, 133, 108920.

    CAS  Google Scholar 

  36. Kumar, A., Hussain, I., Kumar, S., & Koo, B. H. (2021). Structural, optical properties and the origin of spin functionality in the Co modified TiO2 nanoparticles. Vacuum, 183, 109870.

    CAS  Google Scholar 

  37. Mathew, S. S., Sunny, N. E., & Shanmugam, V. (2021). Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorganic Chemistry Communications, 126, 108485.

    CAS  Google Scholar 

  38. Dessai, S., Ayyanar, M., Amalraj, S., Khanal, P., Vijayakumar, S., Gurav, N., & Gurav, S. (2022). Bioflavonoid mediated synthesis of TiO2 nanoparticles: characterization and their biomedical applications. Materials Letters, 311, 131639.

    CAS  Google Scholar 

  39. Li, W., Liang, R., Hu, A., Huang, Z., & Zhou, Y. N. (2014). Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Advances, 4(70), 36959–36966.

    CAS  Google Scholar 

  40. Kumar, S., & Sharma, J.K., (2016). Stable phase CdS nanoparticles for optoelectronics: a study on surface morphology, structural and optical characterization. Materials Science-Poland, 34(2), 368–373

    CAS  Google Scholar 

  41. Spoto, G., Morterra, C., Marchese, L., Orio, L., & Zecchina, A. (1990). The morphology of TiO2 microcrystals and their adsorptive properties towards CO: A HRTEM and FTIR study. Vacuum, 41(1–3), 37–39.

    CAS  Google Scholar 

  42. Hudlikar, M., Joglekar, S., Dhaygude, M., & Kodam, K. (2012). Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Materials Letters, 75, 196–199.

    CAS  Google Scholar 

  43. Sankar, R., Rizwana, K., Shivashangari, K. S., & Ravikumar, V. (2015). Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Applied Nanoscience, 5, 731–736.

    CAS  Google Scholar 

  44. Velayutham, K., Rahuman, A. A., Rajakumar, G., Santhoshkumar, T., Marimuthu, S., Jayaseelan, C., & Elango, G. (2012). Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitology Research, 111, 2329–2337.

    PubMed  Google Scholar 

  45. Roopan, S. M., Bharathi, A., Prabhakarn, A., Rahuman, A. A., Velayutham, K., Rajakumar, G., & Madhumitha, G. (2012). Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 98, 86–90.

    CAS  PubMed  Google Scholar 

  46. Aswini, R., Murugesan, S., & Kannan, K. (2021). Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. International Journal of Environmental Analytical Chemistry, 101(15), 2926–2936.

    CAS  Google Scholar 

  47. Rajakumar, G., Rahuman, A. A., Jayaseelan, C., Santhoshkumar, T., Marimuthu, S., Kamaraj, C., & Jose, S. (2014). Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitology Research, 113, 469–479.

    PubMed  Google Scholar 

  48. Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Letters, 8(8), 447–451.

    CAS  Google Scholar 

  49. Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., & Kim, S. K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968–976.

    CAS  PubMed  Google Scholar 

  50. Singhal, G., Bhavesh, R., Sharma, A. R., & Singh, R. P. (2012). Ecofriendly biosynthesis of gold nanoparticles using medicianally important Ocimum basilicum leaf extract. Advanced Science, Engineering and Medicine, 4(1), 62–66.

    CAS  Google Scholar 

  51. Amanulla, A. M., & Sundaram, R. J. M. T. P. (2019). Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Materials Today: Proceedings, 8, 323–331.

  52. Pathinti, R. S., Gollapelli, B., Jakka, S. K., & Vallamkondu, J. (2021). Green synthesized TiO2 nanoparticles dispersed cholesteric liquid crystal systems for enhanced optical and dielectric properties. Journal of Molecular Liquids, 336, 116877.

    CAS  Google Scholar 

  53. Reddy, K. M., Manorama, S. V., & Reddy, A. R. (2003). Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78(1), 239–245.

    Google Scholar 

  54. Toro, R. G., Diab, M., de Caro, T., Al-Shemy, M., Adel, A., & Caschera, D. (2020). Study of the effect of titanium dioxide hydrosol on the photocatalytic and mechanical properties of paper sheets. Materials, 13(6), 1326.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Caschera, D., Federici, F., de Caro, T., Cortese, B., Calandra, P., Mezzi, A., & Toro, R. G. (2018). Fabrication of Eu-TiO2 NCs functionalized cotton textile as a multifunctional photocatalyst for dye pollutants degradation. Applied Surface Science, 427, 81–91.

    CAS  Google Scholar 

  56. Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M. E., Cab, C., De Coss, R. D., & Oskam, G. (2008). Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 19(14), 145605.

    CAS  PubMed  Google Scholar 

  57. Bolukbasi, S. S., Cakmak, N. K., Tas, A., Ozmen, E., Cevik, E., Gumus, E., & Silig, Y. (2018). The cytotoxic effects of titanium oxide nanoparticle on MDA-MB-231 and MCF-7 Cells. International Journal of Scientific & Technology Research, 8(4), 78.

    Google Scholar 

  58. Perna, S., Alawadhi, H., Riva, A., Allegrini, P., Petrangolini, G., Gasparri, C., & Rondanelli, M. (2022). In vitro and in vivo anticancer activity of basil (ocimum spp.): Current insights and future prospects. Cancers, 14(10), 2375.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, C., Wang, X., Du, J., Gu, Z., & Zhao, Y. (2021). Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Advanced Science, 8(3), 2002797.

    CAS  PubMed  Google Scholar 

  60. Hariharan, D., Thangamuniyandi, P., Christy, A. J., Vasantharaja, R., Selvakumar, P., Sagadevan, S., & Nehru, L. C. (2020). Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 202, 111636.

    CAS  PubMed  Google Scholar 

  61. Chahardoli, A., Haghighi, Z. M. S., Shokoohinia, Y., & Fattahi, A. (2023). Plant based biosynthesis of TiO2 NPs and evaluation of their cytotoxicity, antihemolytic, and protein antidenaturation effects. South African Journal of Botany, 163, 37–44.

    CAS  Google Scholar 

  62. Venkatappa, M. M., Udagani, C., Hanume Gowda, S. M., Venkataramaiah, S., Casini, R., Moussa, I. M., … Elansary, H. O. (2023). Green Synthesised TiO2 Nanoparticles-Mediated Terenna asiatica: Evaluation of Their Role in Reducing Oxidative Stress, Inflammation and Human Breast Cancer Proliferation. Molecules, 28(13), 5126.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Isacfranklin, M., Yuvakkumar, R., Ravi, G., Kumar, P., Saravanakumar, B., Velauthapillai, D., … Alharbi, S. A. (2021). Biomedical application of single anatase phase TiO2 nanoparticles with addition of Rambutan (Nephelium lappaceum L.) fruit peel extract. Applied Nanoscience, 11, 699–708.

    CAS  Google Scholar 

  64. Mahendran, D., Kavi Kishor, P. B., Geetha, N., Manish, T., Sahi, S. V., & Venkatachalam, P. (2021). Efficient antibacterial/biofilm, anti-cancer and photocatalytic potential of titanium dioxide nanocatalysts green synthesised using Gloriosa superba rhizome extract. Journal of Experimental Nanoscience, 16(1), 11–30.

    CAS  Google Scholar 

  65. Lingaraju, K., Basavaraj, R. B., Jayanna, K., Bhavana, S., Devaraja, S., Swamy, H. K., … Naika, H. R. (2021). Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties. Inorganic Chemistry Communications, 127, 108505.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Sophisticated Analytical Instrumentation Facility (SAIF) laboratory, Panjab University, Chandigarh for the characterization facility.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

A.K and N.K: Conceptualization, Data Curating, Formal Reviewing and Analysis; J.K.S., V.S., S.K.S., P.P. and A.K.: Editing and Characterization Facilitation G.A.: Sample Preparation and Testing S.K.: Writing, Editing, Reviewing and Supervision.

Corresponding author

Correspondence to Suresh Kumar.

Ethics declarations

Ethical Approval

In the present study, no animal and human are involved and the manuscript doesn’t require ethical approval.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publication

The study carried out in the present manuscript is a novel work and didn’t involve any data from any individual and doesn’t require consent from any individual.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, A., Kumar, N., Sharma, J.K. et al. Enhanced Cytotoxic Efficacy of Ocimum basilicum Leaf Extract-Mediated TiO2 Nanocrystals. J Clust Sci 35, 1561–1571 (2024). https://doi.org/10.1007/s10876-024-02603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-024-02603-2

Keywords

Navigation