Log in

Synthesis of Copper Oxide Nanoparticles Coated on 3-Glycidoxypropyltrimethoxysilane /Folic Acid/ Hyaluronic Acid, and Its Application as Drug Delivery System: Kinetics, Equilibrium, and Thermodynamic Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, copper oxide nanoparticles (CuO NPs) were successfully synthesized by a simple chemical process. After conjugation of 3-glycidoxypropyltrimethoxysilane (GPTMS), the surfaces of CuO NPs@ GPTMS were functionalized with hyaluronic acid (HA) and folic acid (FA) for the formation of CuO NPs@ GPTMS@HA-FA. The samples were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Surface modification of CuO NPs with Fourier-transform infrared (FT-IR), thermo-gravimetric analysis (TGA), and CHN analysis was proven. Imatinib mesylate (IM) adsorption was studied under various conditions. The maximum sorption capacity was achieved at pH = 6, a contact time of 30 min, an adsorbent dosage of 0.01 g, and a temperature of 298 K. The evaluation of kinetic and isotherm models showed that the pseudo-second-order and Langmuir models were selected as the best fitting model to describe the adsorption method. In vitro release investigations of IM from the CuO NPs@ GPTMS@HA-FA were performed in stimulated human blood fluid (pH = 7.4) and cancer fluid (pH = 5.6) at 37 °C. Release of − 47.10% of IM from CuO NPs@ GPTMS@HA-FA was observed within a period of 6 h at pH = 5.6. The investigation shows that IM, an anticancer drug can be successfully entrapped in the CuO NPs@ GPTMS@HA-FA for the targeted delivery of cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. M.N. Hafeez, C. Celia, V. Petrikaite, Processes. 9, 1527 (2021).

    Article  CAS  Google Scholar 

  2. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, Beilstein J. Nanotechnol. 9, 1050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J.K. Patra, G. Das, L.F. Fraceto, E.V. Ramos Campos, M.D. Pilar Rodriguez–Torres, L.S. Acosta–Torres, L. A. Diaz–Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  4. C.E. DeSantis, J. Ma, M.M. Gaudet, L.A. Newman, K.D. Miller, A. Goding Sauer, A. Jemal, R.L. Siegel, CA Cancer J. Clin. 69, 438 (2019).

    Article  PubMed  Google Scholar 

  5. M. dehghan banadaki, M. Aghaie, H. Aghaie, J. Mol. Liq. 339, 116753 (2021).

    Article  CAS  Google Scholar 

  6. F. ud Din, W. Aman, I. Ullah, O.S. Qureshi, O. Mustapha, S. Shafique, et al. Int. J. Nanomedicine. 12, 7291 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. L. Hasandoost, A. Akbarzadeh, H. Attar, A. Heydarinasab, Artif. Cells Nanomed. Biotechnol. 45, 665 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Y. Lia, B. Yangb, X. Zhanga, Int. J. Pharm. 568, 118508 (2019).

    Article  Google Scholar 

  9. C.R.B. Rhoden, F. da Silva Bruckmann, T. da Rosa Salles, C.G.K. Junior, S.R. Mortari, J. Water Process. Eng. 43, 102262 (2021).

    Article  Google Scholar 

  10. F. da SilvaBruckmann, A.R. Viana, M.Z. Tonel, S.B. Fagan, W.J. da SilvaGarcia, A.H. de Oliveira, L.S. Dorneles, S.R. Mortari, W.L. da Silva, I.Z. da Silva, C.R.B. Rhoden, Environ. Sci. Pollut. Res. 29, 70413–70434 (2022).

    Article  Google Scholar 

  11. T. da Rosa Salles, F. da Silva Bruckamann, A.R. Viana, L.M. Fontanari Krause, S.R. Mortari, C.R.B. Rhoden, J. Polym. Environ. 30, 2695–2713 (2022).

    Article  Google Scholar 

  12. V. Chandrakala, V. Aruna, G. Angajala, Emergent Mater. (2022).

  13. A.P. Ingle, N. Duran, M. Rai, Appl. Microbiol. Biotechnol. 98, 1001 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. S. Kamble, B. Utage, P. Mogle, R. Kamble, S. Hese, B. Dawane, R. Gacche, Comp. Lit. Stud. 17, 1030 (2016).

    CAS  Google Scholar 

  15. V. Verma, D. Kaushik, M. Mounted, Indian J. Pharm. Educ. Res.54, 637 (2020).

    Article  CAS  Google Scholar 

  16. U. Ruman, K. Buskaran, G. Pastorin, M. JaffriMasarudin, S. Fakurazi, M. ZobirHussein, Nanomaterials, 11, 497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Choi, S.R. Choi, R. Zhou, H.F. Kung, I.W. Chen, Acad. Radiol. 11, 996 (2004).

    Article  PubMed  Google Scholar 

  18. G. Huang, H. Huang, Drug Deliv. 25, 766 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kankanit Phiwdang, Sineenart Suphankij, Wanichaya Mekprasart, Wisanu Pecharapa, Energy Procedia. 34, 740 (2013).

    Article  Google Scholar 

  20. F. da Silva Bruckmann, A.R. Viana, L.Q.S. Lopes, R.C.V. Santos, E.I. Muller, S.R. Mortari, C.R.B. Rhoden, Synthesis, Characterization, and Biological Activity Evaluation of Magnetite–Functionalized Eugenol, J. Inorg. Organomet. Polym. Mater. 32, 1459–1472 (2022).

    Article  Google Scholar 

  21. F. da Silva Bruckmann, A.C. Pimentel, A.R. Viana, T. da Rosa Salles, L.M. Fontanari Krause, S.R. Mortari, I.Z. da Silva, C.R.B. Rhoden, Disciplinarum Scientia. Série: Naturais e Tecnológicas, Santa Maria, 21, 1–14 (2020).

  22. R. Betancourt-Galindo, P. Y. Reyes-Rodriguez, B. A. Puente-Urbina, C. A. Avila-Orta, O. S. Rodríguez-Fernández, G. Cadenas-Pliego, R. H. Lira-Saldivar, L. A. García-Cerda, J. Nanomater 2013, 980545 (2013).

  23. I. Perelshtein, A. Lipovsky, N. Perkas, A. Gedanken, E. Moschini, P. Mantecca, Nano Res. 8, 695 (2015).

    Article  CAS  Google Scholar 

  24. I. Langmuir, J.Am. Chem. Soc. 40, 1361 (1918).

    Article  CAS  Google Scholar 

  25. H.M.F, Freundlich, Z. Phys. Chem. (Leipzig). 57, 385 (1906).

    CAS  Google Scholar 

  26. M.I. Temkin, Zh Fiz Khim (Russ J Phys Chem). 15, 296 (1941).

    CAS  Google Scholar 

  27. M.M. Dubinin, Chem. Rev. 60, 235 (1960).

    Article  CAS  Google Scholar 

  28. A. Kazemi, H. Ahmad Panahi, R. Safaeijavan, J. Sep. Sci.43, 614 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. M. Mohammadi Kalakoo, A. Heydarinasab, E. Moniri, H. Ahmad Panahi, R. Khoshneviszadeh, Chemistryselect, 6, 9489 (2021).

    Article  Google Scholar 

  30. M. Mohammadi Kalakoo, A. Heidarinasab, E. Moniri, H. Ahmad Panahi, R. Khoshneviszadeh, Polym. Adv. Technol.1, 13 (2021)

    Google Scholar 

  31. B. Naeimipour, E. Moniri, A. Vaziri Yazdi, R. Safaeijavan, H. Faraji, IET Nanobiotechnol.16, 225 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. A.B. Albadarin, M. Charara, B.M.A. Tarboush, M.N.M.Ahmad, T.A. Kurniawan, N. Mu, J. Mol. Liq. 242 (2017) 478–483.

    Article  CAS  Google Scholar 

  33. S. Suganya, P.S. Kumar, J. Mol. Liq. 259, 88 (2018).

    Article  CAS  Google Scholar 

  34. Z. Berizi, S.Y.Hashemi, M. Hadi, A. Azari, A.H. Mahvi, Water. Sci. Technol. 74, 1235 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. H. Khodayari, A. Heydarinasab, E. Moniri, M. Miralinaghi, Inorg. Chem. Commun. 148, 110366 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Islamic Azad University (Science and Research Branch) for financial support of this project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AM: Methodology, conceptualization, investigation, formal analysis, validation, writing-original draft. RS: Supervision, project administration, formal analysis, validation, writing-original draft. AH: Supervision, project administration, formal analysis, validation, writing-original draft. EM: Project administration, formal analysis, writing-review and editing, investigation.

Corresponding author

Correspondence to Raheleh Safaeijavan.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical Approval 

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majd, A., Safaeijavan, R., Heydarinasab, A. et al. Synthesis of Copper Oxide Nanoparticles Coated on 3-Glycidoxypropyltrimethoxysilane /Folic Acid/ Hyaluronic Acid, and Its Application as Drug Delivery System: Kinetics, Equilibrium, and Thermodynamic Studies. J Clust Sci 34, 3135–3146 (2023). https://doi.org/10.1007/s10876-023-02453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02453-4

Keywords

Navigation