Log in

Enhancing Cell Migration on Polyetherimide-Grafted Fe3O4@SiO2-Labeled Umbilical Cord-Derived Mesenchymal Stem Cells Arrests in Intervertebral Disc Regeneration

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Intervertebral disc regeneration (IDR) cell therapies aim to regenerate the disc's depleted IVD cells. As an outcome, encouraging the transplanted cells' migration towards the site of damage is critical. It was determined that umbilical cord mesenchymal stem cells (UC-MSCs) labelled with Fe3O4@SiO2 coated polyetherimide (PEI) nanomaterials (PEI/Fe3O4@SiO2 NMs) had a repair effect on degenerative disc disease in the rat caudal vertebral. To understand more about the impact of nanomaterials on UC-MSCs, we characterized UC-MSCs labelled with PEI/Fe3O4@SiO2 NMs and tested whether UC-MSCs could repair IDR in animals. We found UC-MSCs migration was aided by the expressions of CXCR4 in the PEI/Fe3O4@SiO2-labeled UC-MSCs group, which also had improved disc height and tissue performance structure and a more significant ratio of transplanted cells. This treatment also triggered significantly enhanced IVD regeneration, as supported by higher levels of ACAN expressions, type II collagen expression, and Sox-9 expression, as well as lower levels of Il-1β, Tnf-α, and Mmp-13 at both protein levels and mRNA than the unlabeled groups. We exhibited that systemic distribution of UC-MSCs labelled with the PEI/Fe3O4@SiO2 NMs could be a suitable procedure for speeding up and enhancing clinically useful UC-MSCs therapy for IDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Nagae, T. Ikeda, Y. Mikami, H. Hase, H. Ozawa, K.-I. Matsuda, H. Sakamoto, Y. Tabata, M. Kawata, and T. Kubo (2007). Intervertebral disc regeneration using platelet-rich plasma and biodegradable gelatin hydrogel microspheres. Tissue Eng. 13, 147–158.

    Article  CAS  PubMed  Google Scholar 

  2. S. C. W. Chan and B. Gantenbein-Ritter (2012). Intervertebral disc regeneration or repair with biomaterials and stem cell therapy-feasible or fiction? Swiss Med Wkly. https://doi.org/10.4414/smw.2012.13598.

    Article  PubMed  Google Scholar 

  3. G. Vadalà, F. Russo, G. Pattappa, D. Schiuma, M. Peroglio, L. M. Benneker, S. Grad, M. Alini, and V. Denaro (2013). The transpedicular approach as an alternative route for intervertebral disc regeneration. Spine (Phila. Pa. 1976) 38, E319–E324.

    Article  PubMed  Google Scholar 

  4. R. J. W. Hoogendoorn, Z. F. Lu, R. J. Kroeze, R. A. Bank, P. I. Wuisman, and M. N. Helder (2008). Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future. J. Cell. Mol. Med. 12, 2205–2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y.-C. Huang, J. P. G. Urban, and K. D. K. Luk (2014). Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10, 561–566.

    Article  PubMed  Google Scholar 

  6. G. Vadalà, F. Russo, L. Ambrosio, M. Loppini, and V. Denaro (2016). Stem cells sources for intervertebral disc regeneration. World J. Stem Cells 8, 185.

    Article  PubMed  PubMed Central  Google Scholar 

  7. R. D. Bowles and L. A. Setton (2017). Biomaterials for intervertebral disc regeneration and repair. Biomaterials 129, 54–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. W. Kroeber, F. Unglaub, H. Wang, C. Schmid, M. Thomsen, A. Nerlich, and W. Richter (2002). New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine (Phila. Pa. 1976) 27, 2684–2690.

    Article  PubMed  Google Scholar 

  9. D. Sakai and G. B. J. Andersson (2015). Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat. Rev. Rheumatol. 11, 243–256.

    Article  PubMed  Google Scholar 

  10. Y.-C. Huang, V. Y. L. Leung, W. W. Lu, and K. D. K. Luk (2013). The effects of microenvironment in mesenchymal stem cell–based regeneration of intervertebral disc. Spine J. 13, 352–362.

    Article  PubMed  Google Scholar 

  11. V. Y. L. Leung, D. M. K. Aladin, F. Lv, V. Tam, Y. Sun, R. Y. C. Lau, S. Hung, A. H. W. Ngan, B. Tang, and C. T. Lim (2014). Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair. Stem Cells 32, 2164–2177.

    Article  CAS  PubMed  Google Scholar 

  12. J. Ying, Z. Han, Y. Zeng, Y. Du, S. Pei, L. Su, D. Ruan, and C. Chen (2019). Evaluation of intervertebral disc regeneration with injection of mesenchymal stem cells encapsulated in PEGDA-microcryogel delivery system using quantitative T2 map**: a study in canines. Am. J. Transl. Res. 11, 2028.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. S. M. Richardson, J. A. Hoyland, R. Mobasheri, C. Csaki, M. Shakibaei, and A. Mobasheri (2010). Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J. Cell. Physiol. 222, 23–32.

    Article  CAS  Google Scholar 

  14. F. Yang, V. Y. L. Leung, K. D. K. Luk, D. Chan, and K. M. C. Cheung (2009). Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol. Ther. 17, 1959–1966.

    Article  CAS  PubMed Central  Google Scholar 

  15. F. Mwale, H. T. Wang, P. Roughley, J. Antoniou, and L. Haglund (2014). Link N and mesenchymal stem cells can induce regeneration of the early degenerate intervertebral disc. Tissue Eng. Part A 20, 2942–2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. G. Vadalà, F. Russo, L. Ambrosio, R. Papalia, and V. Denaro (2016). Mesenchymal stem cells for intervertebral disc regeneration. J. Biol. Regul. Homeost. Agents 30, 173–179.

    PubMed  Google Scholar 

  17. F. Cai, X.-T. Wu, X.-H. **: a study in rabbits. Int. Orthop. 39, 149–159.

    Article  PubMed  Google Scholar 

  18. Y. Tao, C. Liang, H. Li, Y. Zhang, F. Li, G. Chen, and Q. Chen (2013). Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration. Cell Biol. Int. 37, 826–834.

    Article  CAS  PubMed  Google Scholar 

  19. D. Sakai, J. Mochida, Y. Yamamoto, T. Nomura, M. Okuma, K. Nishimura, T. Nakai, K. Ando, and T. Hotta (2003). Transplantation of mesenchymal stem cells embedded in Atelocollagen® gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 24, 3531–3541.

    Article  CAS  PubMed  Google Scholar 

  20. C. C. Shu, M. M. Smith, S. M. Smith, A. J. Dart, C. B. Little, and J. Melrose (2017). A histopathological scheme for the quantitative scoring of intervertebral disc degeneration and the therapeutic utility of adult mesenchymal stem cells for intervertebral disc regeneration. Int. J. Mol. Sci. 18, 1049.

    Article  PubMed  PubMed Central  Google Scholar 

  21. C. Cunha, C. R. Almeida, M. I. Almeida, A. M. Silva, M. Molinos, S. Lamas, C. L. Pereira, G. Q. Teixeira, A. T. Monteiro, and S. G. Santos (2017). Systemic delivery of bone marrow mesenchymal stem cells for in situ intervertebral disc regeneration. Stem Cells Transl. Med. 6, 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  22. E.-K. Shim, J.-S. Lee, D.-E. Kim, S. K. Kim, B.-J. Jung, E.-Y. Choi, and C.-S. Kim (2016). Autogenous mesenchymal stem cells from the vertebral body enhance intervertebral disc regeneration via paracrine interaction: an in vitro pilot study. Cell Transplant. 25, 1819–1832.

    Article  PubMed  Google Scholar 

  23. F. Ehlicke, D. Freimark, B. Heil, A. Dorresteijn, and P. Czermak (2010). Intervertebral disc regeneration: influence of growth factors on differentiation of human mesenchymal stem cells (hMSC). Int. J. Artif. Organs 33, 244–252.

    Article  CAS  PubMed  Google Scholar 

  24. F. Migliorini, B. Rath, M. Tingart, A. Baroncini, V. Quack, and J. Eschweiler (2019). Autogenic mesenchymal stem cells for intervertebral disc regeneration. Int. Orthop. 43, 1027–1036.

    Article  PubMed  Google Scholar 

  25. W.-H. Chen, H.-Y. Liu, W.-C. Lo, S.-C. Wu, C.-H. Chi, H.-Y. Chang, S.-H. Hsiao, C.-H. Wu, W.-T. Chiu, and B.-J. Chen (2009). Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials 30, 5523–5533.

    Article  CAS  PubMed  Google Scholar 

  26. A. Wei, B. Shen, L. Williams, and A. Diwan (2014). Mesenchymal stem cells: potential application in intervertebral disc regeneration. Transl. Pediatr. 3, 71.

    PubMed  PubMed Central  Google Scholar 

  27. S. M. Richardson, G. Kalamegam, P. N. Pushparaj, C. Matta, A. Memic, A. Khademhosseini, R. Mobasheri, F. L. Poletti, J. A. Hoyland, and A. Mobasheri (2016). Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99, 69–80.

    Article  CAS  PubMed  Google Scholar 

  28. B. Choi and S.-H. Lee (2018). Nano/micro-assisted regenerative medicine. Int. J. Mol. Sci. 19, 2187.

    Article  PubMed  PubMed Central  Google Scholar 

  29. R. M. Samsonraj, M. Raghunath, V. Nurcombe, J. H. Hui, A. J. van Wijnen, and S. M. Cool (2017). Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl. Med. 6, 2173–2185.

    Article  PubMed  PubMed Central  Google Scholar 

  30. E. I. Medina-Reyes, D. Garcia-Viacobo, F. A. Carrero-Martinez, and Y. I. Chirino (2017). Applications and risks of nanomaterials used in regenerative medicine, delivery systems, theranostics, and therapy. Crit. Rev. Ther. Drug Carr. Syst. 34, 35.

    Article  Google Scholar 

  31. X. Liu, Z. Yang, J. Sun, T. Ma, F. Hua, and Z. Shen (2019). A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int. J. Nanomed. 14, 3875–3892. https://doi.org/10.2147/IJN.S205574.

    Article  CAS  Google Scholar 

  32. F. Menaa, A. Abdelghani, and B. Menaa (2015). Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. J. Tissue Eng. Regen. Med. 9, 1321–1338.

    Article  CAS  PubMed  Google Scholar 

  33. N. Al-Harbi, H. Mohammed, Y. Al-Hadeethi, A. S. Bakry, A. Umar, M. A. Hussein, M. A. Abbassy, K. G. Vaidya, G. Al Berakdar, and E. M. Mkawi (2021). Silica-based bioactive glasses and their applications in hard tissue regeneration: a review. Pharmaceuticals 14, 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. A. Elnaggar and Y. K. Joung, Tissue-inspired interfacial coatings for regenerative medicine, in H. Chun, K. Park, C. H. Kim, and G. Khang (eds.), Novel Biomaterials for Regenerative Medicine (Springer, Singapore, 2018), pp. 415–420.

    Chapter  Google Scholar 

  35. N. R. Richbourg, N. A. Peppas, and V. I. Sikavitsas (2019). Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J. Tissue Eng. Regen. Med. 13, 1275–1293.

    Article  CAS  PubMed Central  Google Scholar 

  36. A. M. Brokesh and A. K. Gaharwar (2020). Inorganic biomaterials for regenerative medicine. ACS Appl. Mater. Interfaces. 12, 5319–5344.

    Article  CAS  PubMed  Google Scholar 

  37. N. Sabziparvar, Y. Saeedi, M. Nouri, A. S. Najafi-Bozorgi, E. Alizadeh, F. Attar, K. Akhtari, S. E. Mousavi, and M. Falahati (2018). Investigating the interaction of silicon dioxide nanoparticles with human hemoglobin and lymphocyte cells by biophysical, computational, and cellular studies. J. Phys. Chem. B 122, 4278–4288. https://doi.org/10.1021/acs.jpcb.8b00193.

    Article  CAS  PubMed  Google Scholar 

  38. Z. Qiu, J. Wang, K. Yang, J. Guo, W. Wang, R. Pan, and G. Wu (2017). Simultaneous enhancements of mechanical properties and hydrophilic properties of polypropylene via nano-silicon dioxide modified by polydopamine. J Appl Polym Sci. https://doi.org/10.1002/app.45004.

    Article  Google Scholar 

  39. S. Lee, J. M. Kim, C. Kim, H. Kim, H. J. Kang, M.-W. Ha, and H. J. Kim (2018). Densification of silicon dioxide formed by plasma-enhanced atomic layer deposition on 4H-silicon carbide using argon post-deposition annealing. Ceram. Int. 44, 13565–13571.

    Article  CAS  Google Scholar 

  40. L. Liu, Y. Lei, Z. Zhang, J. Liu, S. Lv, and Z. Guo (2020). Fabrication of PDA@ SiO2@ rGO/PDMS dielectric elastomer composites with good electromechanical properties. React. Funct. Polym. 154, 104656.

    Article  CAS  Google Scholar 

  41. G. Jiao, X. He, X. Li, J. Qiu, H. Xu, N. Zhang, and S. Liu (2015). Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv. 5, 53240–53244. https://doi.org/10.1039/C5RA08958A.

    Article  CAS  Google Scholar 

  42. L. Cai, X. Qin, Z. Xu, Y. Song, H. Jiang, Y. Wu, H. Ruan, and J. Chen (2019). Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega 4, 12036–12042. https://doi.org/10.1021/acsomega.9b01142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. F. Tian, Y. Ling, Y. Chen, and Z. Wang (2017). Effects of CCK-8 and cystathionine γ-lyase/hydrogen sulfide system on acute lung injury in rats. Inflammation 40, 174–183. https://doi.org/10.1007/s10753-016-0466-4.

    Article  CAS  PubMed  Google Scholar 

  44. F. Tramer, T. Da Ros, and S. Passamonti (2012). Screening of fullerene toxicity by hemolysis assay. Methods Mol. Biol. 926, 203–217. https://doi.org/10.1007/978-1-62703-002-1_15.

    Article  CAS  PubMed  Google Scholar 

  45. M. K. M. Subarkhan and R. Ramesh (2016). Ruthenium(II) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg. Chem. Front. 3, 1245–1255. https://doi.org/10.1039/c6qi00197a.

    Article  CAS  Google Scholar 

  46. D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24, 1121–1131. https://doi.org/10.1016/S0142-9612(02)00445-3.

    Article  CAS  PubMed  Google Scholar 

  47. M. K. Mohamed Subarkhan, L. Ren, B. **e, C. Chen, Y. Wang, and H. Wang (2019). Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.06.061.

    Article  PubMed  Google Scholar 

  48. W. W. Hom, M. Tschopp, H. A. Lin, P. Nasser, D. M. Laudier, A. C. Hecht, S. B. Nicoll, and J. C. Iatridis (2019). Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity. PLoS ONE 14, e0217357. https://doi.org/10.1371/journal.pone.0217357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. H. Jia, X. Zhang, X. Zeng, R. Cai, Z. Wang, Y. Yuan, and T. Yue (2021). Construction of silver nanoparticles anchored flower-like magnetic Fe3O4@SiO2@MnO2 hybrids with antibacterial and wound healing activity. Appl. Surf. Sci. 567, 150797. https://doi.org/10.1016/j.apsusc.2021.150797.

    Article  CAS  Google Scholar 

  50. H. Li, S. Li, Z. Li, Y. Zhu, and H. Wang (2017). Polysulfone/SiO2 hybrid shell microcapsules synthesized by the combination of pickering emulsification and the solvent evaporation technique and their application in self-lubricating composites. Langmuir 33, 14149–14155. https://doi.org/10.1021/acs.langmuir.7b03370.

    Article  CAS  PubMed  Google Scholar 

  51. Y. Wang, K. Bi, J. Shu, X. Liu, J. Xu, and G. Deng (2019). Ultrasound-controlled DOX-SiO2 nanocomposites enhance the antitumour efficacy and attenuate the toxicity of doxorubicin. Nanoscale 11, 4210–4218. https://doi.org/10.1039/C8NR08497A.

    Article  CAS  PubMed  Google Scholar 

  52. Z. Long, S. Shen, Y. Lu, W. Lan, J. Chen, and H. Qiu (2019). Monodisperse core-shell-structured SiO2@Gd2O3:Eu3+@SiO2@MIP nanospheres for specific identification and fluorescent determination of carbaryl in green tea. Anal. Bioanal. Chem. 411, 4221–4229. https://doi.org/10.1007/s00216-019-01902-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoShan Xu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Wang, T., Li, G. et al. Enhancing Cell Migration on Polyetherimide-Grafted Fe3O4@SiO2-Labeled Umbilical Cord-Derived Mesenchymal Stem Cells Arrests in Intervertebral Disc Regeneration. J Clust Sci 34, 599–611 (2023). https://doi.org/10.1007/s10876-022-02238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02238-1

Keywords

Navigation