Log in

Decrypting the Structural, Electronic and Spectroscopic Properties of GeMgn+(n = 2–12) Clusters: A DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A detailed comprehensive theoretical study on the structures, electronic and spectroscopic properties of GeMgn+ (n = 2–12) clusters has been reported through CALYPSO program together with density functional theory (DFT). It is shown that the geometrical growth patterns of the ground state GeMgn+ clusters are tetrahedral-based in the size range of n from 5 to 7 and tent-based geometry at n = 8–12. GeMg8+ is found to has robust local stability and thus can be identified as a magic cluster. Charge transfer analysis indicates that germanium atoms are electron receivers in all clusters, while magnesium atoms are electron donors. Finally, the GeMg8+ has been further studied, including the relationship between its chemical bond properties and stability, infrared and Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. M. Bernhardt (2005). Gas-phase kinetics and catalytic reactions of small silver and gold clusters. Int. J. Mass Spectrom. 243 (1), 1–29.

    Article  CAS  Google Scholar 

  2. W. A. D. Heer (1993). The physics of simple metal clusters: experimental aspects and simple models. Rev. Modern Phys. 65 (3), 611–676.

    Article  Google Scholar 

  3. J. A. Alonso (2000). Electronic and atomic structure, and magnetism of transition-metal clusters. Chem. Rev. 100 (2), 637–678.

    Article  CAS  PubMed  Google Scholar 

  4. Y. **, S. Lu, A. Hermann, X. Kuang, C. Zhang, C. Lu, and W. Zheng (2016). Probing the structural evolution of ruthenium doped germanium clusters: photoelectron spectroscopy and density functional theory calculations. Sci. Rep. 6 (1), 30116–30116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. X. X. **a, X. Y. Kuang, L. Cheng, and A. Hermann (2016). Deciphering the structural evolution and electronic properties of magnesium clusters: an aromatic homonuclear metal Mg17 cluster. J. Phys. Chem. A 120 (40), 7947–7954.

    Article  CAS  PubMed  Google Scholar 

  6. Y. Tian, D. Wei, Y. **, J. Barroso, C. Lu, and G. Merino (2019). Exhaustive exploration of MgBn (n = 10–20) clusters and their anions. Phys. Chem. Chem. Phys. 21 (13), 6935–6941.

    Article  CAS  PubMed  Google Scholar 

  7. S. **, B. Chen, X. Kuang, C. Lu, W. Sun, X. **a, and G. L. Gutsev (2019). Structural and electronic properties of medium-sized aluminum-doped boron clusters AlBn and their anions. J. Phys. Chem. C 123 (10), 6276–6283.

    Article  CAS  Google Scholar 

  8. J. Li, X. Li, H. Zhai, and L. Wang (2003). Au20: a tetrahedral cluster. Science 299 (5608), 864–867.

    Article  CAS  PubMed  Google Scholar 

  9. W. Sun, J. J. Wang, C. Lu, X. X. **a, X. Kuang, and A. Hermann (2017). Evolution of the structural and electronic properties of medium-sized sodium clusters: a honeycomb-like Na20 cluster. Inorg. Chem. 56 (3), 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  10. X. **ng, A. Hermann, X. Kuang, M. Ju, C. Lu, Y. **, and G. Maroulis (2016). Insights into the geometries, electronic and magnetic properties of neutral and charged palladium clusters. Sci. Rep. 6 (1), 19656–19656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. **, Y. Tian, X. Kuang, C. Zhang, C. Lu, J. Wang, and M. Ju (2015). Ab initio search for global minimum structures of pure and boron doped silver clusters. J. Phys. Chem. A 119 (25), 6738–6745.

    Article  CAS  PubMed  Google Scholar 

  12. Y. **, G. Maroulis, X. Kuang, L. Ding, C. Lu, J. Wang, et al. (2015). Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: Snq (n = 3–20, q = 0, ±1). Phys. Chem. Chem. Phys. 17 (20), 13590–13597.

    Article  CAS  PubMed  Google Scholar 

  13. W. Sun, X. **a, C. Lu, X. Kuang, and A. Hermann (2018). Probing the structural and electronic properties of zirconium doped boron clusters: Zr distorted B12 ligand framework. Phys. Chem. Chem. Phys. 20 (36), 23740–23746.

    Article  CAS  PubMed  Google Scholar 

  14. C. Bole, S. Weiguo, K. **ao-Yu, L. Cheng, X. **nxin, S. Hongxiao, and G. Maroulis (2018). Structural stability and evolution of medium-sized tantalum-doped boron clusters: a half-sandwich-structured TaB12 cluster. Inorg. Chem. 57 (1), 343–350.

    Article  CAS  Google Scholar 

  15. X. X. **a, A. Hermann, X. Y. Kuang, Y. Y. **, C. Lu, and X. D. **ng (2015). Study of the structural and electronic properties of neutral and charged niobium-doped silicon clusters: niobium encapsulated in silicon cages. J. Phys. Chem. C 120 (1), 677–684.

    Article  CAS  Google Scholar 

  16. X. **ng, J. Wang, X. Kuang, X. **a, C. Lu, and G. Maroulis (2016). Probing the low-energy structures of aluminum–magnesium alloy clusters: a detailed study. Phys. Chem. Chem. Phys. 18, 26177–26183.

    Article  CAS  PubMed  Google Scholar 

  17. O. C. Thomas, W. J. Zheng, S. J. Xu Jr., and K. H. Bowen (2002). Onset of metallic behavior in magnesium clusters. Phys. Rev. Lett. 89, 213403.

    Article  PubMed  CAS  Google Scholar 

  18. I. Heidari, S. De, S. M. Ghazi, S. Goedecker, and D. G. Kanhere (2011). Growth and structural properties of MgN (N=10-56) clusters: density functional theory study. J. Phys. Chem. A 115 (44), 12307–12314.

    Article  CAS  PubMed  Google Scholar 

  19. A. Köhn, F. Weigend, and R. Ahlrichs (2001). Theoretical study on clusters of magnesium. Phys. Chem. Chem. Phys. 3 (5), 711–719.

    Article  Google Scholar 

  20. R. W. P. Wagemans, J. H. V. Lenthe, P. E. D. Jongh, A. J. V. Dillen, and K. P. D. Jong (2006). Hydrogen storage in magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127, 16675–16680.

    Article  CAS  Google Scholar 

  21. R. Trivedi and D. Bandyopadhyay (2015). Hydrogen storage in small size MgnCo clusters: a density functional study. Int. J. Hydrog. Energy 40 (37), 12727–12735.

    Article  CAS  Google Scholar 

  22. A. Gupta and D. Sa (2016). Thermoelectric transport in the topological phase due to the coexistence of superconductivity and spin-density-wave. Eur. Phys. J. B 89 (1), 1–6.

    Article  CAS  Google Scholar 

  23. J. Mao, H. S. Kim, J. Shuai, Z. Liu, R. He, U. Saparamadu, F. Tian, W. Liu, and Z. Ren (2016). Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system. Acta Mater. 103, 633.

    Article  CAS  Google Scholar 

  24. J. I. Tani and H. Kido (2008). Lattice dynamics of mg2si and mg2ge compounds from first-principles calculations. Comput. Mater. Sci. 42 (3), 531–536.

    Article  CAS  Google Scholar 

  25. J. J. Martin (1972). Thermal conductivity of Mg2Si, Mg2Ge and Mg2Sn. J. Phys. Chem. Solids 33 (4), 1139–1148.

    Article  CAS  Google Scholar 

  26. J. L. Corkill and M. L. Cohen (1993). Structural, bonding, and electronic properties of iia-iv antifluorite compounds. Phys. Rev. B: Condensed Matter 48 (23), 17138–17144.

    Article  CAS  Google Scholar 

  27. F. Yu, J. X. Sun, and T. H. Chen (2011). High-pressure phase transitions of mg2ge and mg2sn: first-principles calculations. Phys. B: Phys. Condensed Matter 406 (9), 1789–1794.

    Article  CAS  Google Scholar 

  28. F. Kalarasse and B. Bennecer (2008). Electronic and optical properties of the antifluorite semiconductors Be2C and Mg2X (x=C, Si, Ge) under hydrostatic pressure. J.. Phys. Chem. Solids 69 (7), 1775–1781.

    Article  CAS  Google Scholar 

  29. Y. Wang, J. Lv, L. Zhu, and Y. Ma (2010). Crystal structure prediction via particle-swarm opti- mization. Phys. Rev. B 82, 094116.

    Article  CAS  Google Scholar 

  30. Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). Calypso: a method for crystal structure prediction. Comput. Phys. Commun. 183 (10), 2063–2070.

    Article  CAS  Google Scholar 

  31. J. Lv, Y. Wang, L. Zhu, and Y. Ma (2012). Particle-swarm structure prediction on clusters. J. Chem. Phys. 137 (8), 084104.

    Article  PubMed  CAS  Google Scholar 

  32. M. Ju, J. Lv, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, and G. Maroulis (2015). Systematic theoretical investigation of geometries, stabilities and magnetic properties of iron oxide clusters (FeO)nμ (n= 1–8, μ= 0,±1): insights and perspectives. RSC Adv. 5 (9), 6560–6570.

    Article  CAS  Google Scholar 

  33. C. Lu and C. Chen (2020). Indentation-strain stiffening in tungsten nitrides: mechanisms and implications. Phys. Rev. Mater. 4, 043402.

    Article  CAS  Google Scholar 

  34. C. Lu and C. Chen (2020). Structure-strength relations of distinct MoN phases from first-principles calculations. Phys. Rev. Mater. 4, 044002.

    Article  CAS  Google Scholar 

  35. L. P. Ding, F. H. Zhang, Y. S. Zhu, C. Lu, X. Kuang, J. Lv, and P. Shao (2015). Understanding the structural transformation, stability of medium-sized neutral and charged silicon clusters. Sci. Rep. 5 (1), 15951–15951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. P. Li, T. Mei, L. Lv, C. Lu, W. Wang, G. Bao, and G. L. Gutsev (2017). Structure and electronic properties of neutral and negatively charged RhBn clusters (n = 3–10): a density functional theory study. J. Phys. Chem. 121 (34), 6510–6516.

    Article  CAS  Google Scholar 

  37. C. Lu, Q. Li, Y. Ma, and C. Chen (2017). Extraordinary indentation strain stiffening produces superhard tungsten nitrides. Phys. Rev. Lett. 119 (11), 115503.

    Article  PubMed  Google Scholar 

  38. Y. Sun, J. Lv, Y. **e, H. Liu, and Y. Ma (2019). Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 123 (9), 097001.

    Article  CAS  PubMed  Google Scholar 

  39. C. Lu and C. Chen (2018). High-pressure evolution of crystal bonding structures and properties of FeOOH. J. Phys. Chem. Lett. 135 (38), 14167–14171.

    Google Scholar 

  40. C. Lu, A. Maximilian, and C. Changfeng (2018). Unraveling the structure and bonding evolution of the newly discovered iron oxide FeO2. Phys. Rev. B 98, 054102.

    Article  CAS  Google Scholar 

  41. A. D. Becke (1998). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38 (38), 3098–3100.

    Google Scholar 

  42. C. Lee, W. Yang, and R. G. Parr (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37 (2), 785–789.

    Article  CAS  Google Scholar 

  43. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and L. T. Windus (2007). Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 47, 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  44. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. V. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 09, revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  45. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88 (6), 899–926.

    Article  CAS  Google Scholar 

  46. A. E. Reed, R. B. Weinstock, and F. Weinhold (1998). Natural population analysis. J. Chem. Phys. 83 (2), 735–746.

    Article  Google Scholar 

  47. T. Lu and F. Chen (2012). Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592.

    Article  PubMed  CAS  Google Scholar 

  48. D. Y. Zubarev and A. I. Boldyrev (2008). Develo** paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10 (34), 5207–5217.

    Article  CAS  PubMed  Google Scholar 

  49. M. Kabir, A. Mookerjee, and D. G. Kanhere (2006). Structure, electronic properties, and magnetic transition in manganese clusters. Phys. Rev. B Condensed Matter Mater. Phys. 73 (22), 224439.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by National Innovation and Entrepreneurship Training Program for College Students Grant No. 202010920018. Y.H.Liao acknowledges the support from The Scientific and Technological Research Program of Education Department of Hubei Province Grant no. B20172611 and Excellent Talents Foundation of Hubei Polytechnic University Grant no.16xjz01c. Furthermore, this work is also partly supported by the project of Fundamental Research Funds for the Central Universities (No. 2019CDYGYB011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Dai, Lu Zeng or Ben-Chao Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YH., Guo, J., Deng, PJ. et al. Decrypting the Structural, Electronic and Spectroscopic Properties of GeMgn+(n = 2–12) Clusters: A DFT Study. J Clust Sci 33, 1093–1101 (2022). https://doi.org/10.1007/s10876-021-02039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02039-y

Keywords

Navigation