Log in

The Early Life of Gold Nanorods: Temporal Separation of Anisotropic and Isotropic Growth Modes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Gold nanorods (AuNRs) are a particularly interesting class of nanomaterials because their dimensions and size-dependent optical properties make them ideally suited for many applications. AuNRs are typically synthesized using seeded growth approaches, in which a small spherical gold nanoparticle seed grows anisotropically into a rod-shaped particle. Using AuNRs themselves as seeds for the growth of other anisotropic shapes has been demonstrated but is relatively little-explored. In this study, we show that AuNRs grown using a common method (silver-assisted seeded growth) cannot be used as seeds in the synthesis of higher aspect ratio AuNRs. Instead, the seed AuNRs grow isotropically, providing a new synthetic approach to precisely tune the absolute dimensions of the final AuNRs. We furthermore show that the dimensions of the AuNRs are determined by the reaction conditions at very early times (<10 min), and that perturbing the growth solution beyond these times has little influence on the final AuNR properties. The observation of these behaviors may be relevant to ongoing investigations of AuNR growth mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Nikoobakht and M. A. El-Sayed (2003). Chem. Mater. 15, 1957.

    Article  CAS  Google Scholar 

  2. T. K. Sau and C. J. Murphy (2004). Langmuir 20, 6414.

    Article  CAS  Google Scholar 

  3. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter (2008). Acc. Chem. Res. 41, 1721.

    Article  CAS  Google Scholar 

  4. A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt (2009). Small 5, 701.

    Article  CAS  Google Scholar 

  5. D. W. Grainger and D. G. Castner (2008). Adv. Mater. 20, 867.

    Article  CAS  Google Scholar 

  6. Y.-F. Li and C. Chen (2011). Small 7, 2965.

    Article  CAS  Google Scholar 

  7. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek (2011). Small 7, 169.

    Article  CAS  Google Scholar 

  8. A. Verma and F. Stellacci (2010). Small 6, 12.

    Article  CAS  Google Scholar 

  9. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas (2009). J. Phys. Chem. C. 113, 12090.

    Article  CAS  Google Scholar 

  10. Z. Wang and L. Ma (2009). Coord. Chem. Rev. 253, 1607.

    Article  CAS  Google Scholar 

  11. R. S. Norman, J. W. Stone, A. Gole, and C. J. Murphy (2008). Nano. Lett. 8, 302.

    Article  CAS  Google Scholar 

  12. C. J. Murphy, L. B. Thompson, A. M. Alkilany, P. N. Sisco, S. P. Boulos, S. T. Sivapalan, J. A. Yang, D. J. Chernak, and J. Y. Huang (2010). J. Phys. Chem. Lett. 1, 2867.

    Article  CAS  Google Scholar 

  13. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison (2007). Chem. Rev. 107, 2228.

    Article  CAS  Google Scholar 

  14. M. Daniel and D. Astruc (2004). Chem. Rev. 104, 293.

    Article  CAS  Google Scholar 

  15. N. R. Jana (2005). Small 1, 875.

    Article  CAS  Google Scholar 

  16. J. Gao, C. M. Bender, and C. J. Murphy (2003). Langmuir 19, 9065.

    Article  CAS  Google Scholar 

  17. S. Si, C. Leduc, M.-H. Delville, and B. Lounis (2012). Chem. Phys. Chem. 13, 193.

    Article  CAS  Google Scholar 

  18. N. Garg, C. Scholl, A. Mohanty, and R. ** (2010). Langmuir 26, 10271.

    Article  CAS  Google Scholar 

  19. D. K. Smith, N. R. Miller, and B. A. Korgel (2009). Langmuir 25, 9518.

    Article  CAS  Google Scholar 

  20. D. K. Smith and B. A. Korgel (2008). Langmuir 24, 644.

    Article  CAS  Google Scholar 

  21. R. G. Ravavarapu, C. Ungurenanu, P. Krystek, T. G. van Leeuwen, and S. Manohar (2010). Langmuir 26, 5050.

    Article  Google Scholar 

  22. F. H. Hubert, F. Testard, and O. Spalla (2008). Langmuir 24, 9219.

    Article  CAS  Google Scholar 

  23. T. Morita, E. Tanaka, Y. Inagaki, H. Hotta, R. Shingai, Y. Hatakeyama, K. Nishikawa, H. Murai, H. Nakano, and K. Hino (2010). J. Phys. Chem. C 114, 3804.

    Article  CAS  Google Scholar 

  24. W. Abidi, B. Pansu, R. Krishnaswamy, P. Beaunier, H. Remita, and M. Imperor-Clerc (2011). RSC Advances 1, 434.

    Article  CAS  Google Scholar 

  25. M. Liu and P. Guyot-Sionnest (2005). J. Phys. Chem. B 109, 22192.

    Article  CAS  Google Scholar 

  26. M. L. Personick, M. R. Langille, J. Zhang, and C. A. Mirkin (2011). Nano. Lett. 11, 3394.

    Article  CAS  Google Scholar 

  27. Y. Niidome, Y. Nakamura, K. Honda, Y. Akiyama, K. Nishioka, H. Kawasaki, and N. Nakashima (2009). Chem. Commun. 13, 1754.

    Article  Google Scholar 

  28. J. A. Edgar, A. M. McDonagh, and M. B. Cortie (2012). ACS Nano 6, 1116.

    Article  CAS  Google Scholar 

  29. D. Seo, C. I. Yoo, J. Jung, and H. Song (2008). J. Am. Chem. Soc. 130, 2940.

    Article  CAS  Google Scholar 

  30. C. J. Murphy, L. B. Thompson, D. J. Chernak, J. A. Yang, S. T. Sivapalan, S. P. Boulos, J. Y. Huang, A. M. Alkilany, and P. N. Sisco (2011). Curr. Opin. Colloid Interface Sci 16, 128.

    Article  CAS  Google Scholar 

  31. K. Sohn, F. Kim, K. C. Pradel, J. Wu, Y. Peng, F. Zhou, and J. Huang (2009). ACS Nano 3, 2191.

    Article  CAS  Google Scholar 

  32. L. Gou and C. J. Murphy (2005). Chem. Mater. 17, 3668.

    Article  CAS  Google Scholar 

  33. F. Ratto, P. Matteini, F. Rossi, and R. Pini (2010). J. Nanopart. Res. 12, 2029.

    Article  CAS  Google Scholar 

  34. H. A. Keul, M. Moller, and M. R. Bockstaller (2007). Langmuir 23, 10307.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation (CHE-1011980) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Murphy.

Additional information

Dedicated to Richard D. Adams on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.A., Lohse, S.E., Boulos, S.P. et al. The Early Life of Gold Nanorods: Temporal Separation of Anisotropic and Isotropic Growth Modes. J Clust Sci 23, 799–809 (2012). https://doi.org/10.1007/s10876-012-0474-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0474-y

Keywords

Navigation