Log in

Solvothermal Syntheses and Crystal Structures of Rare Earth Thioantimonates [Y(en)4]SbS4·0.5en and [Tm(en)4]SbS4·0.5en

  • ORIGINAL PAPER
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two rare earth metal thioantimonates [RE(en)4]SbS4·0.5en (RE = Y(1), Tm(2); en = ethylenediamine) were synthesized under mild solvothermal conditions. Compounds 1 and 2 are isostructural, and both crystallize in monoclinic space group P21/n. Crystallographic data for 1: a = 11.0894(19), b = 12.905(2), c = 16.000(3) Å, β = 91.792(4), V = 2288.7(7) Å3, Z = 4. For 2: a = 11.0870(14), b = 12.8977(16), c = 15.986(2) Å, β = 91.879(3), V = 2284.7(5) Å3, Z = 4. The four-en coordinated rare earth complex cation [RE(en)4]3+ formed in situ balances the charge of the [SbS4]3− anion in the crystal structure. The RE3+ ion is in an eight-coordinated environment involving eight N atoms of four en ligands forming a bicapped trigonal prism. Hydrogen bonds link [RE(en)4]3+, [SbS4]3− and en species into a three-dimensional structure. The structure determination of 1 and 2 implies that the ionic radii of rare earth metal ions play an important role on the structures of the rare earth metal thioantimonates.

Index Abstract

Rare earth metal thioantimonates [RE(en)4]SbS4·0.5en (RE = Y, Tm) were synthesized under mild solvothermal conditions, whose structures are related with the ionic radii of the rare earth metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sheldrick WS, Wachhold M (1998) Coord Chem Rev 176:211

    Article  CAS  Google Scholar 

  2. **g L, Chen Z, Wang RJ, Proserpio DM (1999) Coord Chem Rev 190–192:707

    Google Scholar 

  3. Sheldrick WS (2000) J Chem Soc Dalton Trans 3041

  4. Dehnen S, Melullis M (2007) Coord Chem Rev 251:1259

    Article  CAS  Google Scholar 

  5. Jia DX, Zhang Y, Dai J, Zhu QY, Gu XM (2004) Z Anorg Allg Chem 630:313

    Article  CAS  Google Scholar 

  6. Li J, Chen Z, Emge TJ, Yuen T, Proserpio DM (1998) Inorg Chim Acta 273:310

    Article  CAS  Google Scholar 

  7. Behrens M, Scherb S, Näther C, Bensch W (2003) Z Anorg Allg Chem 629:1367

    Article  CAS  Google Scholar 

  8. Jia DX, Zhang Y, Dai J, Zhu QY, Gu XM (2004) J Solid State Chem 177:2477

    Article  CAS  Google Scholar 

  9. Schaefer M, Näther C, Lehnert N, Bensch W (2004) Inorg Chem 43:2914

    Article  CAS  Google Scholar 

  10. Kiebach R, Studt F, Näther C, Bensch W (2004) Eur J Inorg Chem (12):2553

  11. Stephan H, Kanatzidis MG (1997) Inorg Chem 36:6050

    Article  CAS  Google Scholar 

  12. Vaqueiro P, Darlow DP, Powell AV, Chippindale AM (2004) Solid State Ionics 172:601

    Article  CAS  Google Scholar 

  13. Stähler R, Bensch W (2001) J Chem Soc Dalton Trans 2518

  14. Stähler R, Mosel BD, Eckert H, Bensch W (2002) Angew Chem Int Ed 41:4487

    Article  Google Scholar 

  15. Vaqueiro P, Chippindale AM, Powell AV (2004) Inorg Chem 43:7963

    Article  CAS  Google Scholar 

  16. Bensch W, Näther C, Schur M (1997) Chem Commun 1773

  17. Almsick T, Sheldrick WS (2006) Z Anorg Allg Chem 632:1413

    Article  Google Scholar 

  18. Jia DX, Zhang Y, Zhao QX, Deng J (2006) Inorg Chem 45:9812

    Article  CAS  Google Scholar 

  19. Fu ML, Guo GC, Cai LZ, Zhang ZJ, Huang JS (2005) Inorg Chem 44:184

    Article  CAS  Google Scholar 

  20. Jia DX, Zhao QX, Dai J, Zhang Y, Zhu QY (2006) Z Anorg Allg Chem 632:349

    Article  CAS  Google Scholar 

  21. Kromm A, Sheldrick WS (2008) Z Anorg Allg Chem 634:121

    Article  CAS  Google Scholar 

  22. Kromm A, Sheldrick WS (2008) Z Anorg Allg Chem 634:225

    Article  CAS  Google Scholar 

  23. Jia DX, Zhu QY, Dai J, Lu W, Guo WJ (2005) Inorg Chem 44:819

    Article  CAS  Google Scholar 

  24. Jia DX, Zhao QX, Zhang Y, Dai J, Zou JL (2005) Inorg Chem 44:8861

    Article  CAS  Google Scholar 

  25. Jia DX, Deng J, Zhao QX, Zhang Y (2007) J Mol Struct 833:114

    Article  CAS  Google Scholar 

  26. Sheldrick GM (1997) SHELXS-97, program for structure solution. Universität of Göttingen, Germany

    Google Scholar 

  27. Sheldrick GM (1997) SHELXL-97, program for structure refinement. Universität of Göttingen, Germany

    Google Scholar 

  28. Neculai AM, Neculai D, Roesky HW, Magull J (2004) Polyhedron 23:183

    Article  CAS  Google Scholar 

  29. Muller-Buschbaum K, Quitmann CC (2006) Inorg Chem 45:2678

    Article  Google Scholar 

  30. Schaefer M, Engelke L, Bensch W (2003) Z Anorg Allg Chem 629:1912

    Article  CAS  Google Scholar 

  31. Schur M, Bensch W (2000) Acta Cryst C56:1107

    CAS  Google Scholar 

  32. Schur M, Rijnberk H, Näther C, Bensch W (1998) Polyhedron 17:101

    Article  Google Scholar 

  33. Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4th edn. Wiley, New York, p 1011

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of P. R. China (No. 20771077), and the Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-xian Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Jj., Zhao, J., **, Qy. et al. Solvothermal Syntheses and Crystal Structures of Rare Earth Thioantimonates [Y(en)4]SbS4·0.5en and [Tm(en)4]SbS4·0.5en. J Chem Crystallogr 40, 975–980 (2010). https://doi.org/10.1007/s10870-010-9774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-010-9774-y

Keywords

Navigation