Log in

Realization of green emission in AlN:Eu2+ phosphors for LED and flexible anti-counterfeiting film applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phosphors play an extremely important role in solid-state lighting and full-color displays. Recently, it has been observed that their properties can be extensively utilized in the field of anti-counterfeiting. For the study of innovative anti-counterfeiting materials, the selection of high-quality matrix materials is indispensable. In this work, green AlN:Eu2+ phosphors are synthesized by the direct nitriding method, and their physical structure, micro-morphology, elemental composition, and photoluminescence properties are systematically investigated at different synthesis temperatures and do** concentrations. The results show that the peak emission of AlN:0.05Eu2+ occurs at 525 nm at a synthesis temperature of 1400 °C, and the fluorescence intensity retains 53.5% of its room temperature value when the test temperature is increased to 110 °C. The synthesized phosphors are dispersed in thermoplastic polyurethane (TPU) to create a UV-excited, flexible anti-counterfeiting film. The AlN:Eu2+@TPU anti-counterfeiting film exhibits excellent light transmission, flexibility, stretchability, and water resistance. When a current of 50 mA is applied, the green LED encapsulated with AlN exhibits high color purity. The CIE coordinates of the white LED are (0.32, 0.34), with a relevant color temperature (CCT) of 5727 K and a color rendering index (Ra) of 85.9. Overall, the results suggest that AlN:Eu2+ phosphors possess significant potential for realizing multidimensional applications in lighting displays and anti-counterfeiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R. Arppe-Tabbara, M. Tabbara, T.J. Sorensen, Versatile and validated optical authentication system based on physical unclonable functions. ACS Appl. Mater. Interfaces 11, 6475–6482 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. W. Yao, Q. Tian, J. Liu, Q. Xue, M. Li, L. Liu, Q. Lu, W. Wu, Preparation and RGB upconversion optic properties of transparent anti-counterfeiting films. Nanoscale 9, 15982–15989 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. R. Arppe, T.J. Sørensen, Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 1, 0031 (2017)

    Article  CAS  Google Scholar 

  4. K. Park, K. Jung, S.J. Kwon, H.S. Jang, D. Byun, I.K. Han, H. Ko, Plasmonic nanowire-enhanced upconversion luminescence for anticounterfeit devices. Adv. Funct. Mater. 26, 7836–7846 (2016)

    Article  CAS  Google Scholar 

  5. K. Muthamma, D. Sunil, P. Shetty, Carbon dots as emerging luminophores in security inks for anti-counterfeit applications-an up-to-date review. Appl. Mater. Today 23, 101050 (2021)

    Article  Google Scholar 

  6. M. Ni, W. Luo, D. Wang, Y. Zhang, H. Peng, X. Zhou, X. **e, Orthogonal reconstruction of upconversion and holographic images for anticounterfeiting based on energy transfer. ACS Appl. Mater. Interfaces 13, 19159–19167 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. A. Rivadeneyra, A. Albrecht, F. Moreno-Cruz, D.P. Morales, M. Becherer, J.F. Salmeron, Screen printed security-button for radio frequency identification tags. IEEE Access 8, 49224–49228 (2020)

    Article  Google Scholar 

  8. X. Fu, G. Li, S. Cai, H. Yang, K. Lin, M. He, J. Wen, H. Li, Y. **ong, D. Chen, X. Liu, Color-switchable hybrid dots/hydroxyethyl cellulose ink for anti-counterfeiting applications. Carbohydr. Polym. 251, 117084 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. B. Dong, Y. Yuan, M. Ding, W. Bai, S. Wu, Z. Ji, Efficient dual-mode luminescence from lanthanide-doped core-shell nanoarchitecture for anti-counterfeiting applications. Nanotechnology 31, 365705 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. L. Chen, C. Lai, R. Marchewka, R.M. Berry, K.C. Tam, Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale 8, 13288–13296 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. H. Cheng, Y. Lu, D. Zhu, L. Rosa, F. Han, M. Ma, W. Su, P.S. Francis, Y. Zheng, Plasmonic nanopapers: flexible, stable and sensitive multiplex PUF tags for unclonable anti-counterfeiting applications. Nanoscale 12, 9471–9480 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. J. Molina-González, A. Arellano-Morales, O. Meza, G. Ramírez-García, H. Desirena, An anti-counterfeiting strategy based on thermochromic pigment activated by highly Yb3+ doped photothermal particles. J. Alloys Compd. 850, 156709 (2021)

    Article  Google Scholar 

  13. S. Zhao, Z. Wang, Z. Ma, F. Fan, W. Liu, Achieving multimodal emission in Zn4B6O13:Tb3+, Yb3+ for information encryption and anti-counterfeiting. Inorg. Chem. 59, 15681–15689 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. J. Tang, Y. Mu, P. Du, L. Luo, Luminescence modulation of the Eu3+ doped Srn+1SnnO3n+1 (n=1, 2, 5, ∞) ceramics based on photochromism and its application in anti-counterfeiting technology. Ceram. Int. 46, 11962–11969 (2020)

    Article  CAS  Google Scholar 

  15. M. Skwierczynska, M. Runowski, P. Kulpinski, S. Lis, Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide(III) ions. Carbohydr. Polym. 206, 742–748 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Song, G. Gong, J. Du, S. **e, M. Ouyang, Y. Feng, J. Xu, L. Xu, Synthesis and inkjet printing of NaYF4:Ln3+@NaYF4 core-shell nanoparticles with enhanced upconversion fluorescence for anti-counterfeiting applications. J. Nanosci. Nanotechnol. 20, 1511–1519 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. D. Przybylska, T. Grzyb, Synthesis and up-conversion of core/shell SrF2:Yb3+, Er3+@SrF2:Yb3+, Nd3+ nanoparticles under 808, 975, and 1532 nm excitation wavelengths. J. Alloys Compd. 831, 154797 (2020)

    Article  CAS  Google Scholar 

  18. C. Shi, Y. Zhu, G. Zhu, X. Shen, M. Ge, Phototunable full-color emission of dynamic luminescent materials. J. Mater. Chem. C 6, 9552–9560 (2018)

    Article  CAS  Google Scholar 

  19. J.Y. Park, J.W. Chung, H.K. Yang, Versatile fluorescent Gd2MoO6:Eu3+ nanophosphor for latent fingerprints and anti-counterfeiting applications. Ceram. Int. 45, 11591–11599 (2019)

    Article  CAS  Google Scholar 

  20. X. Wang, T. Li, W. Liang, C. Zhu, L. Guo, Triple NIR light excited up-conversion luminescence in lanthanide-doped BaTiO3 phosphors for anti-counterfeiting. J. Am. Ceram. Soc. 104, 5826–5836 (2021)

    Article  CAS  Google Scholar 

  21. Z. Lu, J. Tang, P. Du, W. Li, Z. Liu, J. Wang, L. Luo, Multilevel luminescence of Er3+/Pr3+ co-doped Ca2Nb2O7 ceramics and composite films for optical anti-counterfeiting. Ceram. Int. 47, 8248–8255 (2021)

    Article  CAS  Google Scholar 

  22. Q. Zhou, X. Dong, Y. **ong, B. Zhang, S. Lu, Q. Wang, Y. Liao, Y. Yang, H. Wang, Multi-responsive lanthanide-based hydrogel with encryption, naked eye sensing, shape memory, self-healing, and antibacterial activity. ACS Appl. Mater. Interfaces 12, 28539–28549 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. J. Nie, W. Ying, J. Gu, F. Wang, S. Xu, S. Liu, Upconversion logic gates based on dual-wavelength excitation. J. Phys. D Appl. Phys. 53, 285103 (2020)

    Article  CAS  Google Scholar 

  24. X. Wang, X. Luo, X. Wang, Study on blends of thermoplastic polyurethane and aliphatic polyester: morphology, rheology, and properties as moisture vapor permeable films. Polym. Test. 24, 18–24 (2005)

    Article  Google Scholar 

  25. L. **e, Y. Shu, Y. Hu, J. Cheng, Y. Chen, SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection: new strategy of CNT disinfection. Chemosphere 251, 126286 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. W. Liang, Y. Xu, X. Li, X.X. Wang, H.D. Zhang, M. Yu, S. Ramakrishna, Y.Z. Long, Transparent Polyurethane Nanofiber Air Filter for High-Efficiency PM2.5 Capture. Nanoscale Res. Lett. 14, 361 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  27. M. Muhammad, A. Alruwaili, D. Milinovic, T. Khan, G. Ali, I. Ahmad, Structural, thermal and luminescence properties of AlN: Tm thin films deposited on silicon substrate and optical fiber. Semiconductors 52, 2039–2045 (2019)

    Article  Google Scholar 

  28. M. Maqbool, G. Ali, S.O. Cho, I. Ahmad, M. Mehmood, M.E. Kordesch, Nanocrystals formation and intense green emission in thermally annealed AlN: Ho films for microlaser cavities and photonic applications. J. Appl. Phys. 108, 043528 (2010)

    Article  Google Scholar 

  29. B. Han, K.C. Mishra, M. Raukas, K. Klinedinst, J. Tao, J.B. Talbot, A study of luminescence from Tm3+, Tb3+, and Eu3+ in AlN powder. J. Electrochem. Soc. 154, J262–J266 (2007)

    Article  CAS  Google Scholar 

  30. J.M. Zavada, N. Nepal, J.Y. Lin, H.X. Jiang, E. Brown, U. Hömmerich, J. Hite, G.T. Thaler, C.R. Abernathy, S.J. Pearton, R. Gwilliam, Ultraviolet photoluminescence from Gd-implanted AlN epilayers. Appl. Phys. Lett. 89, 152107 (2006)

    Article  Google Scholar 

  31. Q. Wang, J. Li, W. Zhang, H. Zheng, R. Cong, Synthesis, and photoluminescence and magnetic properties of Tb-doped AlN single-crystalline nanobelts. J. Lumin. 236, 118089 (2021)

    Article  CAS  Google Scholar 

  32. W. Wang, X. Wang, P. Zhang, X. Lei, H. Yang, Near-white emission observed in Dy doped AlN. RSC Adv. 6, 54801–54805 (2016)

    Article  CAS  Google Scholar 

  33. T.-C. Liu, H. Kominami, H.F. Greer, W. Zhou, Y. Nakanishi, R.-S. Liu, Blue emission by interstitial site occupation of Ce3+ in AlN. Chem. Mater. 24, 3486–3492 (2012)

    Article  CAS  Google Scholar 

  34. H.-S. Do, S.-W. Choi, S.-H. Hong, Blue-emitting AlN:Eu2+ powder phosphor prepared by Spark Plasma Sintering. J. Am. Ceram. Soc. 93, 356–358 (2010)

    Article  CAS  Google Scholar 

  35. X.D. Wang, M.M. Yang, X.H. Zeng, Y.J. Mo, J.C. Zhang, J.F. Wang, K. Xu, Investigation of energy transfer mechanism in Er3+ and Tm3+ doped AlN crystalline films. J. Alloys Compd. 726, 209–213 (2017)

    Article  CAS  Google Scholar 

  36. W. Wang, X. Lei, Z. Ye, N. Zhao, H. Yang, The luminescent properties and latent fingerprint identification application of AlN:Ce Tb phosphors. J. Alloys Compd. 705, 253–261 (2017)

    Article  CAS  Google Scholar 

  37. Z. Fan, Z. Ye, Y. Qie, Y. Liu, Z. Shi, H. Yang, The photoluminescence properties and latent photocatalytic hydrogen evolution application of AlN:Eu3+. J. Alloys Compd. 817, 152759 (2020)

    Article  CAS  Google Scholar 

  38. Z. Fan, Z. Ye, Y. Qie, Y. Liu, H. Yang, Photoluminescence and photocatalytic hydrogen evolution properties of orange-red emitting AlN:Sm3+. J. Mater. Sci. Mater. Electron. 30, 20109–20118 (2019)

    Article  CAS  Google Scholar 

  39. L.-J. Yin, Q.-Q. Zhu, W. Yu, L.-Y. Hao, X. Xu, F.-C. Hu, M.-H. Lee, Europium location in the AlN: Eu green phosphor prepared by a gas-reduction-nitridation route. J. Appl. Phy. 111, 053534 (2012)

    Article  Google Scholar 

  40. P. Melnikov, I.V. Arkhangelsky, V.A. Nascimento, L.C.S. de Oliveira, A.F. Silva, L.Z. Zanoni, Thermal properties of europium nitrate hexahydrate Eu(NO3)3·6H2O. J. Therm. Anal. Calorim. 128, 1353–1358 (2016)

    Article  Google Scholar 

  41. L.-J. Yin, X. Xu, W. Yu, J.-G. Yang, L.-X. Yang, X.-F. Yang, L.-Y. Hao, X.-J. Liu, Synthesis of Eu2+-doped AlN phosphors by carbothermal reduction. J. Am. Ceram. Soc. 93, 1702–1707 (2010)

    Article  CAS  Google Scholar 

  42. C. Yan, Z. Liu, W. Zhuang, R. Liu, X. **ng, Y. Liu, G. Chen, Y. Li, X. Ma, YScSi4N6C:Ce3+-a broad cyan-emitting phosphor to weaken the cyan cavity in full-spectrum white light-emitting diodes. Inorg. Chem. 56, 11087–11095 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. C. Ji, Z. Huang, X. Tian, W. **e, J. Wen, H. He, C. Zhou, T. Zeng, Synthesis and photoluminescence properties of a novel BaGe4O9:Eu3+ red emitting phosphor for warm white LEDs. Dyes Pigm. 160, 772–778 (2019)

    Article  CAS  Google Scholar 

  44. J. Zhong, W. Zhuang, X. **ng, R. Liu, Y. Li, Y. Zheng, Y. Hu, H. Xu, Synthesis, structure and luminescence properties of new blue-green-emitting garnet-type Ca3Zr2SiGa2O12:Ce3+ phosphor for near-UV pumped white-LEDs. RSC Adv. 6, 2155–2161 (2016)

    Article  CAS  Google Scholar 

  45. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

  46. K. Zhao, L. Yin, Z. Ma, T. Yang, H. Tang, P. Cao, S. Huang, Investigation of the solid-solution limit, crystal structure, and thermal quenching mitigation of Sr-substituted Rb2CaP2O7:Eu2+ phosphors for white LED applications. Inorg. Chem. 61, 1627–1635 (2022)

    Article  CAS  PubMed  Google Scholar 

  47. J. Bai, Q. Wang, H. Yu, L. Yang, J. Han, B. Dai, J. Zhu, Enabling highly effective underwater oxygen-consuming reaction at solid-liquid-air triphasic interface. Appl. Surf. Sci. 512, 145747 (2020)

    Article  CAS  Google Scholar 

  48. W. Gao, W. Ge, J. Shi, Y. Tian, J. Zhu, Y. Li, Stretchable, flexible, and transparent SrAl2O4:Eu2+@TPU ultraviolet stimulated anti-counterfeiting film. Chem. Eng. J. 405, 126949 (2021)

    Article  CAS  Google Scholar 

  49. M. Xu, W. Ge, J. Shi, Y. Wu, Y. Li, Stretchable and flexible Bi2Ti4O11: Yb3+, Er3+ @TPU film stimulated by near infrared for dynamic and multimodal anti-counterfeiting. J. Alloys Compd. 884, 161164 (2021)

    Article  CAS  Google Scholar 

  50. M. Zikriya, C.G. Renuka, C. Manjunath, Optical absorption intensity analysis using Judd-Ofelt theory and photoluminescence investigation for red-emitting Eu3+: TiO2 nanoparticles. Solid State Sci. 107, 106371 (2020)

    Article  CAS  Google Scholar 

  51. D. Durmus, Correlated color temperature: use and limitations. Light. Res. Technol. 54, 363–375 (2022)

    Article  Google Scholar 

  52. C.S. Mccamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color. Res. Appl. 17, 142–144 (1992)

    Article  Google Scholar 

  53. Y. Chen, Y. Lan, D. Wang, G. Zhang, W. Peng, Y. Chen, X. He, Q. Zeng, J. Wang, Luminescence properties of Gd2MoO6:Eu3+ nanophosphors for WLEDs. Dalton Trans. 50, 6281–6289 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (52073165, 52072227).

Funding

National Natural Science Foundation of China, 52073165, Wanyin Ge.

Author information

Authors and Affiliations

Authors

Contributions

Honglei Yin contributed toward methodology, formal analysis, visualization, data curation, and writing–original draft. Wanyin Ge contributed toward conceptualization, data curation, validation, and funding acquisition. Ye Tian contributed toward supervision. Peng He contributed toward SEM and XPS data report. Qian Zhang contributed toward investigation and resources. **n **e contributed toward validation.

Corresponding authors

Correspondence to Wanyin Ge or Ye Tian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Ge, W., Tian, Y. et al. Realization of green emission in AlN:Eu2+ phosphors for LED and flexible anti-counterfeiting film applications. J Mater Sci: Mater Electron 35, 1349 (2024). https://doi.org/10.1007/s10854-024-13081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13081-7

Navigation