Log in

Channel thickness effect on the performance of amorphous SiZnSnO semiconductor thin-film transistor with metal cap** structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin-film transistors (TFTs) based on amorphous oxide semiconductors have proven successful in the display industry and have recently expanded their applications. Consequently, attention to high-performance amorphous oxide based TFTs has significantly increased. In this study, we investigate the effect of the active channel-layer thickness on the performance of metal-cap** (MC) a-SiZnSnO (a-SZTO) TFTs, where the MC layer improves the electrical properties and stability despite its simplicity. At the thinnest channel thickness of 6 nm, the mobility increases the most, reaching 106.79%. Subsequently, as the thickness of a-SZTO increases, the mobility increase gradually decreases. At the thickest 120 nm, the mobility increase is 59.94%, almost half the increase observed at 6 nm. The improved electrical properties of the MC layer structure are largely attributed to the injected electrons resulting from the additional bent band in the back-channel region where the MC layer is present. Different channel thicknesses have varying effects on the injected electrons. These results indicate that, in addition to the previously reported effect of the MC layer on electrode type, the thickness of the channel also plays a significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data utilized or examined in this study are available from the corresponding author upon reasonable request.

References

  1. Y.J. Kim, S.-Y. Kim, J. Noh, C.H. Shim, U. Jung, S.K. Lee, K.E. Chang, C. Cho, B.H. Lee, Sci. Rep. 6, 39353 (2016). https://doi.org/10.1038/srep39353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.H. Cho, C.H. Choi, H.J. Seul, H.C. Cho, J.K. Jeong, ACS Appl. Mater. Interfaces 13, 16628–16640 (2021). https://doi.org/10.1021/acsami.0c22677

    Article  CAS  PubMed  Google Scholar 

  3. J.S. Kim, S. Kang, Y. Jang, Y. Lee, K. Kim, W. Kim, W. Lee, C.S. Hwang, Phys. Status Solidi Rapid Res. Lett. 15, 2000549 (2021). https://doi.org/10.1002/pssr.202000549

    Article  CAS  Google Scholar 

  4. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488–492 (2004). https://doi.org/10.1038/nature03090

    Article  CAS  PubMed  Google Scholar 

  5. S. Aikawa, T. Nabatame, K. Tsukagoshi, Appl. Phys. Lett. 103, 172105 (2013). https://doi.org/10.1063/1.4822175

    Article  CAS  Google Scholar 

  6. J.-H. Park, H.-J. Seok, C.-H. Kim, S.H. Jung, H.K. Cho, H.-K. Kim, Adv. Electron. Mater. 7, 2001216 (2021). https://doi.org/10.1002/aelm.202001216

    Article  CAS  Google Scholar 

  7. L. Jia, J. Su, D. Liu, H. Yang, R. Li, Y. Ma, L. Yi, X. Zhang, Mater. Sci. Semicond. Process. 106, 104762 (2020). https://doi.org/10.1016/j.mssp.2019.104762

    Article  CAS  Google Scholar 

  8. J.Y. Choi, K. Heo, K.S. Cho, S.W. Hwang, S. Kim, S.Y. Lee, Sci. Rep. 6(1), 36504 (2016). https://doi.org/10.1038/srep36504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G.H. Kim, B. Du Ahn, H.S. Shin, W.H. Jeong, H.J. Kim, H.J. Kim, Appl. Phys. Lett. 94, 233501 (2009). https://doi.org/10.1063/1.3151827

    Article  CAS  Google Scholar 

  10. W. Pan, X. Zhou, Y. Li, W. Dong, L. Lu, S. Zhang, Mater. Sci. Semicond. Process. 151, 106998 (2022). https://doi.org/10.1016/j.mssp.2022.106998

    Article  CAS  Google Scholar 

  11. J. Park, C.Y. Kim, M.J. Kim, S. Choi, Y.H. Hwang, K.C. Choi, ACS Appl. Electron. Mater. 5, 1606–1614 (2023). https://doi.org/10.1021/acsaelm.2c01672

    Article  CAS  Google Scholar 

  12. Y. Han, S. Lee, E.K. Lee, H. Yoo, B.C. Jang, Adv. Sci. 11, 2309221 (2024). https://doi.org/10.1002/advs.202309221

    Article  CAS  Google Scholar 

  13. J. Guo, K. Han, S. Subhechha, X. Duan, Q. Chen, D. Geng, S. Huang, L. Xu, J. An, G. S. Kar, X. Gong, L. Wang, L. Li, M. Liu, in 2021 IEEE International Electron Devices Meeting (IEEE, 2021), pp. 8–5. https://doi.org/10.1109/IEDM19574.2021.9720700

  14. S. Subhechha, N. Rassoul, A. Belmonte, R. Delhougne, K. Banerjee, G.L. Donadio, H. Dekkers, M.J. van Setten, H. Puliyalil, M. Mao, S. Kundu, M. Pak, L. Teugels, D. Tsvetanova, N. Bazzazian, L. Klijs, H. Hody, A. Chasin, J. Heijlen, L. Goux, G.S. Karimec, in 2021 Symposium on VLSI Technology (2021), pp. 1–2

  15. A. Chasin, J. Franco, K. Triantopoulos, H. Dekkers, N. Rassoul, A. Belmonte, Q. Smets, S. Subhechha, D. Claes, M. J. Van Setten, J. Mitard, R. Delhougne, V. Afanas’Ev, B. Kaczer, G. S. Kar, in 2021 IEEE International Electron Devices Meeting (IEDM) (2021). pp. 31.1.1–31.1.4. https://doi.org/10.1109/IEDM19574.2021.9720666

  16. S.-H. Bae, S.-H. Moon, Y.H. Kwon, N.-J. Seong, K.-J. Choi, S.-M. Yoon, J. Alloys Compd. 906, 164283 (2022). https://doi.org/10.1016/j.jallcom.2022.164283

    Article  CAS  Google Scholar 

  17. M.J. Seok, M. Mativenga, D. Geng, J. Jang, IEEE Trans. Electron Devices 60, 3787–3793 (2013). https://doi.org/10.1109/TED.2013.2280912

    Article  CAS  Google Scholar 

  18. J.Y. Choi, S. Kim, D.H. Kim, S.Y. Lee, Thin Solid Films 594, 293–298 (2015). https://doi.org/10.1016/j.tsf.2015.04.048

    Article  CAS  Google Scholar 

  19. J.Y. Lee, S.Y. Lee, J. Nanosci. Nanotechnol. 20, 5002–5005 (2020). https://doi.org/10.1166/jnn.2020.17836

    Article  PubMed  Google Scholar 

  20. S.T. Kim, Y. Shin, P.S. Yun, J.U. Bae, I.J. Chung, J.K. Jeong, Electron. Mater. Lett. 13, 406–411 (2017). https://doi.org/10.1007/s13391-017-1613-2

    Article  CAS  Google Scholar 

  21. B.H. Lee, A. Sohn, S. Kim, S.Y. Lee, Sci. Rep. 9, 886 (2019). https://doi.org/10.1038/s41598-018-37530-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T.-C. Lu, W.-T. Chen, H.-W. Zan, M.-D. Ker, Jpn. J. Appl. Phys. 53, 064302 (2014). https://doi.org/10.7567/JJAP.53.064302

    Article  CAS  Google Scholar 

  23. H. **e, J. Xu, G. Liu, L. Zhang, C. Dong, Mater. Sci. Semicond. Process. 64, 1–5 (2017). https://doi.org/10.1016/j.mssp.2017.03.003

    Article  CAS  Google Scholar 

  24. J. Raja, K. Jang, N. Balaji, S.Q. Hussain, S. Velumani, S. Chatterjee, T. Kim, J. Yi, Mater. Sci. Semicond. Process. 37, 129–134 (2015). https://doi.org/10.1016/j.mssp.2015.02.036

    Article  CAS  Google Scholar 

  25. H.S. Jeong, H.S. Cha, S.H. Hwang, H.I. Kwon, Electronics 9(11), 1875 (2020). https://doi.org/10.3390/electronics9111875

    Article  CAS  Google Scholar 

  26. W.S. Liu, C.H. Hsu, Y. Jiang, Y.C. Lai, H.C. Kuo, Membranes 12(1), 49 (2021). https://doi.org/10.3390/membranes12010049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D.H. Kim, H.S. Cha, H.S. Jeong, S.H. Hwang, H.I. Kwon, Electronics 10(11), 1295 (2021). https://doi.org/10.3390/electronics10111295

    Article  CAS  Google Scholar 

  28. Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 516(17), 5899–5902 (2008). https://doi.org/10.1016/j.tsf.2007.10.051

    Article  CAS  Google Scholar 

  29. W. Shin, J.Y. Lee, R.H. Koo, J. Kim, J.H. Lee, S.Y. Lee, S.T. Lee, Adv. Electron. Mater. 10(2), 2300515 (2024). https://doi.org/10.1002/aelm.202300515

    Article  CAS  Google Scholar 

  30. C. Im, J. Kim, N.-K. Cho, J. Park, E.G. Lee, S.-E. Lee, H.-J. Na, Y.J. Gong, Y.S. Kim, ACS Appl. Mater. Interfaces 13, 51266–51278 (2021). https://doi.org/10.1021/acsami.1c17351

    Article  CAS  PubMed  Google Scholar 

  31. B.H. Lee, D.-Y. Lee, J.Y. Lee, S. Park, S. Kim, S.Y. Lee, Solid State Electron. 158, 59–63 (2019). https://doi.org/10.1016/j.sse.2019.05.013

    Article  CAS  Google Scholar 

  32. M.J. Kim, H.J. Park, S. Yoo, M.H. Cho, J.K. Jeong, IEEE Trans. Electron Devices 69, 2409–2416 (2022). https://doi.org/10.1109/TED.2022.3156961

    Article  CAS  Google Scholar 

  33. H.-W. Park, K. Park, J.-Y. Kwon, D. Choi, K.-B. Chung, IEEE Trans. Electron Devices 64, 159–163 (2017). https://doi.org/10.1109/TED.2016.2630043

    Article  CAS  Google Scholar 

  34. Y.-M. Kim, K.-S. Jeong, H.-J. Yun, S.-D. Yang, S.-Y. Lee, Y.-C. Kim, J.-K. Jeong, H.-D. Lee, G.-W. Lee, Appl. Phys. Lett. 102, 173502 (2013). https://doi.org/10.1063/1.4803536

    Article  CAS  Google Scholar 

  35. Y. Kuwahara, K. Takechi, J. Tanaka, H. Tanabe, IEEE Electron Device Lett. 40, 1273–1276 (2019). https://doi.org/10.1109/LED.2019.2924484

    Article  CAS  Google Scholar 

  36. J. Yang, P.-Y. Liao, T.-C. Chang, B.-W. Chen, H.-C. Huang, W.-C. Su, H.-C. Chiang, Q. Zhang, Appl. Phys. Lett. 110, 143508 (2017). https://doi.org/10.1063/1.4979870

    Article  CAS  Google Scholar 

  37. J.Y. Choi, S. Kim, S.Y. Lee, Appl. Phys. Lett. 100, 022109 (2012). https://doi.org/10.1063/1.3669700

    Article  CAS  Google Scholar 

  38. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, K. Seki, Phys. Status Solidi (a) 201, 1075–1094 (2004). https://doi.org/10.1002/pssa.200404346

    Article  CAS  Google Scholar 

  39. K.T. Kim, J. Kim, Y.-H. Kim, S.K. Park, IEEE Electron Device Lett. 35, 850–852 (2014). https://doi.org/10.1109/LED.2014.2329955

    Article  CAS  Google Scholar 

  40. Z. Yang, J. Yang, T. Meng, M. Qu, Q. Zhang, Mater. Lett. 166, 46–50 (2016). https://doi.org/10.1016/j.matlet.2015.12.029

    Article  CAS  Google Scholar 

  41. B.H. Lee, S.Y. Lee, Phys. Status Solidi (a) 215, 1700698 (2018). https://doi.org/10.1002/pssa.201700698

    Article  CAS  Google Scholar 

  42. J.Y. Lee, B.-K. Ju, S.Y. Lee, ACS Appl. Electron. Mater. 5, 6189–6196 (2023). https://doi.org/10.1021/acsaelm.3c01105

    Article  CAS  Google Scholar 

  43. S. Zhang, B. Liu, X. Zhang, C. Wen, H. Sun, X. Liu, Q. Yao, X. Zi, Z. Bao, Z. **ao, Y. Zhang, G. Yuan, J. Guo, C. Ning, D. Shi, F. Wang, Z. Yu, Mater. Sci. Semicond. Process. 179, 108093 (2024). https://doi.org/10.1016/j.mssp.2023.108093

    Article  CAS  Google Scholar 

  44. P.B. Shea, J. Kanicki, N. Ono, Appl. Phys. Lett. 98, 014503 (2005). https://doi.org/10.1063/1.1949713

    Article  CAS  Google Scholar 

  45. Y. Li, Y.L. Pei, R.Q. Hu, Z.M. Chen, Y. Zhao, Z. Shen, B.F. Fan, J. Liang, G. Wang, Curr. Appl. Phys. 14, 941–945 (2014). https://doi.org/10.1016/j.cap.2014.04.011

    Article  Google Scholar 

  46. H. Im, H. Song, J. Park, Y. Hong, J. Ha, S.-B. Ji, J. Jeong, Y. Hong, IEEE Trans. Electron Devices 64, 1683–1688 (2017). https://doi.org/10.1109/TED.2017.2664661

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interest this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ji Ye Lee: Conceptualization, Methodology, Validation, Formal analysis, Resources, Writing—Original Draft. Byeong-Kwon Ju: Corresponding author, Writing—Review & Editing. Sang Yeol Lee: Corresponding author, Writing—Review & Editing.

Corresponding authors

Correspondence to Byeong-Kwon Ju or Sang Yeol Lee.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Ju, BK. & Lee, S. Channel thickness effect on the performance of amorphous SiZnSnO semiconductor thin-film transistor with metal cap** structure. J Mater Sci: Mater Electron 35, 1254 (2024). https://doi.org/10.1007/s10854-024-13049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13049-7

Navigation