Log in

BiVO4 synthesized by the combustion method: a comparison between orange peel powder and urea used as fuel

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, BiVO4 particles were synthesized via the combustion method using orange peel powder as a fuel for photocatalytic methylene blue (MB) degradation. The novelty lies in using biomass as a fuel source and leveraging orange peel phytochemicals as stabilizing and complexing agents, eliminating the need for nitric acid required in conventional methods. XRD patterns showed that the orange peel promotes ternary phase formation (Dreyerite and Clinobisvanite phases), while urea supports the binary and ternary phase combination (i.e., V6O13 and BiVO4). Raman, XPS, and FTIR analyses confirmed the BiVO4 monoclinic phase formation using both fuels, with a band gap of approximately 2.4 eV. Increasing annealing temperature reduced structural disorder, V–O bond length, and surface area, which are more pronounced with orange peel. Photocatalytic experiments revealed the significant MB removal by adsorption with urea, while orange peel primarily drove photocatalysis in both cases, following a pseudo-first-order kinetic model. Scavenger experiments showed holes as the main reactive species promoting MB degradation. With a rise in catalyst dosage, removal is primarily enhanced through adsorption, confirmed by dark condition experiments. The BiVO4 sample annealed at 350 ºC with orange peel fuel exhibited the best photocatalytic performance that can completely remove MB after 270 min under 200 W LED light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17(1), 145–155 (2019)

    Article  CAS  Google Scholar 

  2. F.J. Cano, O. Reyes-Vallejo, A. Romero-Núñez, J.C. García, A. García-Sotelo, S. Velumani, A. Kassiba, MB adsorption by TiO2/GO nanocomposites: a comparison of the synthesis method. In 2022 19th international conference on electrical engineering, computing science and automatic control (CCE). (IEEE, 2022). pp. 1–6

  3. R. Sánchez-Albores, F.J. Cano, P.J. Sebastian, O. Reyes-Vallejo, Microwave-assisted biosynthesis of ZnO-GO particles using orange peel extract for photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 10(6), 108924 (2022)

    Article  Google Scholar 

  4. A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 555, 47–74 (2018)

    Article  CAS  Google Scholar 

  5. G. **e, H. Wang, Y. Zhou, Y. Du, C. Liang, L. Long, X. Xu, Simultaneous remediation of methylene blue and Cr (VI) by mesoporous BiVO4 photocatalyst under visible-light illumination. J. Taiwan Inst. Chem. Eng. 112, 357–365 (2020)

    Article  CAS  Google Scholar 

  6. S. Payra, K.L. Reddy, R.S. Sharma, S. Singh, S. Roy, A trade-off between adsorption and photocatalysis over ZIF-derived composite. J. Hazard. Mater. 393, 122491 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. R.M. Sánchez-Albores, B.Y. Pérez-Sariñana, C.A. Meza-Avendaño, P.J. Sebastian, O. Reyes-Vallejo, J.B. Robles-Ocampo, Hydrothermal synthesis of bismuth vanadate-alumina assisted by microwaves to evaluate the photocatalytic activity in the degradation of methylene Blue. Catal. Today 353, 126–133 (2020)

    Article  Google Scholar 

  8. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, BiVO4 based high k microwave dielectric materials: a review. J. Mater. Chem. C 6(35), 9290–9313 (2018)

    Article  CAS  Google Scholar 

  9. M.A. Gaikwad, U.P. Suryawanshi, U.V. Ghorpade, J.S. Jang, M.P. Suryawanshi, J.H. Kim, Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting. Small 18(10), 2105084 (2022)

    Article  CAS  Google Scholar 

  10. S. Ghotekar, K. Pagar, S. Pansambal, H.A. Murthy, R. Oza, A review on eco-friendly synthesis of BiVO4 nanoparticle and its eclectic applications. Adv. J. Sci. Eng. 1(4), 106–112 (2020)

    Google Scholar 

  11. R.M. Sánchez-Albores, O. Reyes-Vallejo, E. Ríos-Valdovinos, A. Fernández-Madrigal, F. Pola-Albores, C.I. Enríquez-Flores, J. Moreira-Acosta, Characterization and photoelectrochemical evaluation of BiVO4 films developed by thermal oxidation of metallic Bi films electrodeposited. Mater. Sci. Semicond. Process. 153, 107184 (2023)

    Article  Google Scholar 

  12. A.S. Manjunatha, N.S. Pavithra, S. Marappa, S.A. Prashanth, G. Nagaraju, Green synthesis of flower-like BiVO4 nanoparticles by solution combustion method using lemon (citrus limon) juice as a fuel: photocatalytic and electrochemical study. ChemistrySelect 3(47), 13456–13463 (2018)

    Article  CAS  Google Scholar 

  13. M. Ganeshbabu, N. Kannan, P.S. Venkatesh, G. Paulraj, K. Jeganathan, D. MubarakAli, Synthesis and characterization of BiVO4 nanoparticles for environmental applications. RSC Adv. 10(31), 18315–18322 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Chen, J. Wang, D. Meng, Y. **ng, X. Tian, X. Yu, X. Wu, Effects of citric acid and urea on the structural and morphological characteristics of BiVO4 synthesized by the sol–gel combustion method. J. Sol-Gel Sci. Technol. 76(3), 562–571 (2015)

    Article  CAS  Google Scholar 

  15. H.Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J. Eur. Ceram. Soc. 28(15), 2955–2962 (2008)

    Article  CAS  Google Scholar 

  16. L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A: Chem. 252(1–2), 120–124 (2006)

    Article  CAS  Google Scholar 

  17. Z. Zhang, W. Wang, M. Shang, W. Yin, Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst. Catal. Commun. 11(11), 982–986 (2010)

    Article  CAS  Google Scholar 

  18. O. Reyes-Vallejo, R. Sánchez-Albores, A. Fernández-Madrigal, S. Torres-Arellano, P.J. Sebastian, Evaluation of hydrogen evolution reaction on chemical bath deposited Cu2O thin films: effect of copper source and triethanolamine content. Int. J. Hydrogen Energy 47(54), 22775–22786 (2022)

    Article  CAS  Google Scholar 

  19. B. Ozturk, C. Parkinson, M. Gonzalez-Miquel, Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 206, 1–13 (2018)

    Article  CAS  Google Scholar 

  20. S. Torres-Arellano, O. Reyes-Vallejo, J.P. Enriquez, J.L. Aleman-Ramirez, A.M. Huerta-Flores, J. Moreira, P.J. Sebastian, Biosynthesis of cuprous oxide using banana pulp waste extract as a reducing agent. Fuel 285, 119152 (2021)

    Article  CAS  Google Scholar 

  21. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)

    Article  CAS  Google Scholar 

  22. P. Kubelka, Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of paint). Zeitschrift fur technische Physik 12, 593–601 (1931)

    Google Scholar 

  23. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953)

    Article  CAS  Google Scholar 

  24. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Article  CAS  Google Scholar 

  25. S. Brunauer, P.H. Emmett, E. Teller, Absorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  26. G. Li, Y. Bai, W.F. Zhang, The difference in valence band top of BiVO4 with different crystal structure. Mater. Chem. Phys. 136(2–3), 930–934 (2012)

    Article  CAS  Google Scholar 

  27. N.A. Mohamed, N.A. Arzaee, M.F.M. Noh, A.F. Ismail, J. Safaei, J.S. Sagu, M.A.M. Teridi, Electrodeposition of BiVO4 with needle-like flower architecture for the high-performance photoelectrochemical splitting of water. Ceram. Int. 47(17), 24227–24239 (2021)

    Article  CAS  Google Scholar 

  28. J.L. Aleman-Ramirez, O. Reyes-Vallejo, P.U. Okoye, R. Sanchez-Albores, A. Maldonado-Álvarez, P.J. Sebastian, Crystal phase evolution of high temperature annealed Fe3O4-CaO catalysts for biodiesel production. Biofuels, Bioprod. Biorefin. 17(4), 843–58 (2023)

    Article  CAS  Google Scholar 

  29. R. Yang, R. Zhu, Y. Fan, L. Hu, Q. Chen, In situ synthesis of C-doped BiVO4 with natural leaf as a template under different calcination temperatures. RSC Adv. 9(25), 14004–14010 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S.R.M. Thalluri, C. Martinez-Suarez, A. Virga, N. Russo, G. Saracco, Insights from crystal size and band gap on the catalytic activity of monoclinic BiVO4. Int. J. Chem. Eng. Appl. 4(5), 305 (2013)

    CAS  Google Scholar 

  31. O. Reyes, M. Pal, J. Escorcia-García, R. Sánchez-Albores, P.J. Sebastian, Microwave-assisted chemical synthesis of Zn2SnO4 nanoparticles. Mater. Sci. Semicond. Process. 108, 104878 (2020)

    Article  CAS  Google Scholar 

  32. O. Reyes-Vallejo, J. Escorcia-García, P.J. Sebastian, Effect of complexing agent and deposition time on structural, morphological, optical and electrical properties of cuprous oxide thin films prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 138, 106242 (2022)

    Article  CAS  Google Scholar 

  33. P. Brack, J.S. Sagu, T.N. Peiris, A. McInnes, M. Senili, K.U. Wijayantha, E. Selli, Aerosol-assisted CVD of bismuth vanadate thin films and their photoelectrochemical properties. Chem. Vap. Depos. (2015). https://doi.org/10.1002/cvde.201407142

    Article  Google Scholar 

  34. X. He, C. Zhang, D. Tian, The structure, vibrational spectra, and thermal expansion study of AVO4 (A= Bi, Fe, Cr) and Co2V2O7. Materials 13(7), 1628 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. Choudhury, M. Dey, A. Choudhury, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO 2 nanoparticles. Int. Nano Lett. 3, 1–8 (2013)

    Article  CAS  Google Scholar 

  36. O.V. Rambadey, A. Kumar, P.R. Sagdeo, Investigating the correlation between the Urbach energy and asymmetry parameter of the Raman mode in semiconductors. Phys. Rev. B 104(24), 245205 (2021)

    Article  CAS  Google Scholar 

  37. M. Guo, Q. He, A. Wang, W. Wang, Z. Fu, A novel, simple and green way to fabricate BiVO4 with excellent photocatalytic activity and its methylene blue decomposition mechanism. Crystals 6(7), 81 (2016)

    Article  Google Scholar 

  38. P. Shvets, O. Dikaya, K. Maksimova, A. Goikhman, A review of Raman spectroscopy of vanadium oxides. J. Raman Spectrosc. 50(8), 1226–1244 (2019)

    Article  CAS  Google Scholar 

  39. Y. Chen, Y. Liu, X. **e, C. Li, Y. Si, M. Zhang, Q. Yan, Synthesis flower-like BiVO4/BiOI core/shell heterostructure photocatalyst for tetracycline degradation under visible-light irradiation. J. Mater. Sci.: Mater. Electron. 30(10), 9311–9321 (2019)

    CAS  Google Scholar 

  40. E. da Cruz Severo, G.L. Dotto, A. Martínez-de la Cruz, E.L. Cuellar, E.L. Foletto, Enhanced photocatalytic activity of BiVO 4 powders synthesized in presence of EDTA for the decolorization of rhodamine B from aqueous solution. Environ. Sci. Pollut. Res. 25, 34123–34130 (2018)

    Article  Google Scholar 

  41. R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite, and pucherite, with comparisons to (VO4) 3-bearing minerals: namibite, pottsite, and schumacherite. J. Raman Spectrosc.: Int. J. Orig. Work Asp. Raman Spectrosc.Incl. High. Ord. Process. Brillouin Rayleigh Scatt. 37(7), 722–732 (2006)

    Article  CAS  Google Scholar 

  42. B. Rahimi, A. Ebrahimi, Photocatalytic process for total arsenic removal using an innovative BiVO4/TiO2/LED system from aqueous solution: optimization by response surface methodology (RSM). J. Taiwan Inst. Chem. Eng. 101, 64–79 (2019)

    Article  CAS  Google Scholar 

  43. F.J. Cano, O. Reyes-Vallejo, A. Ashok, M.D.L.L. Olvera, S. Velumani, A. Kassiba, Mechanisms of dyes adsorption on titanium oxide–graphene oxide nanocomposites. Ceram. Int. 49(13), 21185–21205 (2023)

    Article  CAS  Google Scholar 

  44. P. Pookmanee, S. Ko**ok, R. Puntharod, S. Sangsrichan, S. Phanichphant, Preparation and characterization of BiVO4 powder by the sol-gel method. Ferroelectrics 456(1), 45–54 (2013)

    Article  CAS  Google Scholar 

  45. O. Reyes-Vallejo, R. Sánchez-Albores, A. Maldonado-Alvarez, A. Ashok, J.C. Duran-Alvarez, V. Subramaniam, Calcium-magnesium oxide by the ball-milling method using eggshell as calcium source: its study for photodegradation of methylene blue. J. Mater. Sci.: Mater. Electron. 34(8), 770 (2023)

    CAS  Google Scholar 

  46. A.S. de la Rosa, D.A. Cortés-Hernández, J. Escorcia-García, H.U. López-Herrera, White-light luminescence from Tm3+-doped borosilicate glass-ceramics synthesized by the sol-gel route. Ceram. Int. 49(14), 23985–23995 (2023)

    Article  Google Scholar 

  47. S. Payra, S.K. Ganeshan, S. Challagulla, S. Roy, A correlation story of syntheses of ZnO and their influence on photocatalysis. Adv. Powder Technol. 31(2), 510–520 (2020)

    Article  CAS  Google Scholar 

  48. A. Fujishima, X. Zhang, D.A. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy 32(14), 2664–2672 (2007)

    Article  CAS  Google Scholar 

  49. M.F.R. Samsudin, S. Sufian, R. Bashiri, N.M. Mohamed, R.M. Ramli, Synergistic effects of pH and calcination temperature on enhancing photodegradation performance of m-BiVO4. J. Taiwan Inst. Chem. Eng. 81, 305–315 (2017)

    Article  CAS  Google Scholar 

  50. M. Arumugam, M.Y. Choi, Effect of operational parameters on the degradation of methylene blue using visible light active BiVO4 photocatalyst. Bull. Korean Chem. Soc. 41(3), 304–309 (2020)

    Article  CAS  Google Scholar 

  51. S. Obregón, G. Colón, On the different photocatalytic performance of BiVO4 catalysts for methylene blue and rhodamine B degradation. J. Mol. Catal. A: Chem. 376, 40–47 (2013)

    Article  Google Scholar 

  52. G.S. Kamble, Y.C. Ling, Solvothermal synthesis of facet-dependent BiVO4 photocatalyst with enhanced visible-light-driven photocatalytic degradation of organic pollutant: assessment of toxicity by zebrafish embryo. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  53. H.E.A. Mohamed, B.T. Sone, S. Khamlich, E. Coetsee-Hugo, H.C. Swart, T. Thema, M.S. Dhlamini, Biosynthesis of BiVO4 nanorods using callistemon viminalis extracts: photocatalytic degradation of methylene blue. Mater. Today: Proc. 36, 328–335 (2021)

    CAS  Google Scholar 

  54. A.H. Abdullah, H.J.M. Moey, N.A. Yusof, Response surface methodology analysis of the photocatalytic removal of methylene blue using bismuth vanadate prepared via polyol route. J. Environ. Sci. 24(9), 1694–1701 (2012)

    Article  CAS  Google Scholar 

  55. X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater. Chem. Phys. 103(1), 162–167 (2007)

    Article  CAS  Google Scholar 

  56. Y. Wang, F. Liu, Y. Hua, C. Wang, X. Zhao, X. Liu, H. Li, Microwave synthesis and photocatalytic activity of Tb3+ doped BiVO4 microcrystals. J. Colloid Interface Sci. 483, 307–313 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. Y. Shen, M. Huang, Y. Huang, J. Lin, J. Wu, The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradiation. J. Alloy. Compd. 496(1–2), 287–292 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Odín Reyes-Vallejo and Rocío Sánchez-Albores acknowledge CONAHCYT for the postdoctoral. Thanks to Ing. Marvin Reyes Vallejo for general assistance. Thanks to Dr. Selene Islas and M.Sc. Viridiana Maturano from UNAM for FTIR and BET analysis. The authors thank the IER-UNAM technicians MSc María Luisa Ramón García for XRD analysis, and Rogelio Morán Elvira for SEM characterization. One of the authors of this paper, A. Ashok, acknowledges the Dirección General de Asuntos del Personal Académico (DGAPA) de la Universidad Nacional Autónoma de México (UNAM) for providing postdoctoral scholarship and Instituto de Física-UNAM for performing the research activities.

Funding

Odín Reyes Vallejo (CVU 487411) and Rocío Sánchez-Albores (CVU 715180) acknowledge CONAHCYT for the postdoctoral fellowships, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Odín Reyes Vallejo: Conceptualization, investigation, experiments, methodology, characterization, review, editing, and writing the original draft. Rocío Magdalena Sánchez-Albores: Characterization, visualization, review, editing, and writing the original draft. A. Ashok: Methodology, characterization, and editing. R.P. Serrano-Ramirez: Characterization, editing, and review. Juan Carlos Durán Álvarez: Surface characterization and review. P. Bartolo-Pérez: XPS characterization and review. Francisco J. Cano: Characterization and review. S. Velumani: Editing, and review.

Corresponding authors

Correspondence to Odín Reyes-Vallejo or Rocío Sánchez-Albores.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Vallejo, O., Sánchez-Albores, R., Ashok, A. et al. BiVO4 synthesized by the combustion method: a comparison between orange peel powder and urea used as fuel. J Mater Sci: Mater Electron 35, 1245 (2024). https://doi.org/10.1007/s10854-024-13001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13001-9

Navigation