Log in

Green innovation: cool white light emission from inorganic ZnS nanoparticles with tunable structural and optical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the realm of luminescent materials, white light emitting inorganic nanoparticles offers a promising avenue for creating more efficient and durable light emitting devices. Here the production of cool white light emission from Inorganic Zinc Sulfide (ZnS) nanoparticles have been achieved by simple green co- precipitation method, employing Phyllanthus emblica extract as the cap** agent. The structural and optical properties were studied using X-ray diffraction (XRD), Scanning Electron Microscopy with Energy dispersive X-ray analysis (SEM–EDX), Fourier Transform Infrared (FTIR) Spectroscopy, and Transmission Electron Microscopy (TEM) with Selected Area Electron Diffraction (SAED) pattern, UV–visible and photoluminescence (PL) analysis. The XRD analysis confirms the cubic crystalline nature of the sample. The tauc plot study confirms the particle size dependent change in the energy bandgap. Tunable visible emissions are observed from PL spectra and undoped ZnS nanoparticles display cool white emission (x = 0.3056, y = 0.3030) characterized by a high Correlated Color Temperature (CCT = 7255 K) and excellent Color Rendering Index (CRI = 93). These attributes position them as suitable for integration into Light Emitting Diodes (LEDs) as phosphors. Green synthesized ZnS nanoparticles, owing to their tunable structural and optical properties, demonstrate substantial promise in revolutionizing multiple sectors, particularly in advanced lightening and display applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data required to reproduce these findings cannot be shared at this time as the data forms part of ongoing study.

References

  1. N.B. Nair, H.C. Swart, S.J. Dhoble, Prog. Mater. Sci.. Mater. Sci. 109, 100622 (2020)

    CAS  Google Scholar 

  2. W.M. Yen, H. Yamamoto, Practical applications of phosphors (CRC Press, Boca Raton, 2018), pp.15–17

    Google Scholar 

  3. M. Cesaria, B. Di Bartolo, Nanomaterials 9, 1048 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Qiao, Q. Zhao, Q. Liu, Z. **a, J. Rare Earths 37, 565–572 (2019)

    CAS  Google Scholar 

  5. A. Khatkar, R. Kumar, S. Lata, Solid State Commun. 375, 115356 (2023)

    CAS  Google Scholar 

  6. G.B. Nair, S.J. Dhoble, The fundamentals and applications of light-emitting diodes: the revolution in the lighting industry (Woodhead Publishing, Sawston, 2020), pp.155–174

    Google Scholar 

  7. M.H. Fang, Z. Bao, W.T. Huang, R.S. Liu, Chem. Rev. 122, 11474–11513 (2022)

    CAS  PubMed  Google Scholar 

  8. J. Shen, Y. Feng, SILICON 15, 2163–2172 (2023)

    CAS  Google Scholar 

  9. A.G. Bispo-Jr, L.F. Saraiva, S.A. Lima, A.M. Pires, M.R. Davolos, J. Lumin.Lumin. 237, 118167 (2021)

    CAS  Google Scholar 

  10. Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang, L. Wang, X. Chen, D. Wu, Y. Tian, Y. Zhang, L. Zhang, Adv. Mater. 33, 2001367 (2021)

    CAS  Google Scholar 

  11. K. Panigrahi, A. Nag, J. Phys. Chem. C 126, 8553–8564 (2022)

    CAS  Google Scholar 

  12. S. Hariyani, J. Brgoch, Inorg. Chem. 61, 4205–4218 (2021)

    PubMed  Google Scholar 

  13. P. Zhu, H. Zhu, G.C. Adhikari, S. Thapa, OSA Continuum. 2, 2413–2427 (2019)

    CAS  Google Scholar 

  14. M. Worku, Y. Tian, C. Zhou, S. Lee, Meisner Q, Zhou Y. Ma B. ACS Appl. Mater. Interfaces 10, 30051–30057 (2018)

    CAS  PubMed  Google Scholar 

  15. J. Wei, Z. Hu, W. Zhou, H. Lu, W. Zhang, R. Guo, Appl. Mater. Today 29, 101585 (2022)

    Google Scholar 

  16. M. Sheoran, P. Sehrawat, N. Kumari, S.P. Khatkar, R.K. Malik, Chem. Phys. Lett. 773, 138608 (2021)

    CAS  Google Scholar 

  17. L. Yin, Y. Yan, H. Guo, L. Wang, H. **u, J. Zhang, IEEE Trans. Electron Devices 68, 3901–3906 (2021)

    CAS  Google Scholar 

  18. Z.K. Heiba, M.B. Mohamed, A.M. El-Naggar, A.A. Albassam, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04647-2

    Article  Google Scholar 

  19. M.B. Mohamed, M.H. Abdel-Kader, Mater. Chem. Phys. 241, 122285 (2020)

    CAS  Google Scholar 

  20. P.L. Reddy, K. Deshmukh, K. Chidambaram, J. Mater. Sci. Mater. Electron. 30, 4676–4687 (2019)

    CAS  Google Scholar 

  21. J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong, Adv. Nat. Sci.: Nanosci. Nanotechnol. (2018). https://doi.org/10.1088/2043-6254/aaa6f1

    Article  Google Scholar 

  22. L.S. Archana, D.N. Rajendran, Mater. Today: Proceed. 41, 461–467 (2021)

    CAS  Google Scholar 

  23. J. Wang, Y. **ng, F. Wan, C. Fu, C.H. Xu, F.X. Liang, L.B. Luo, J. Mater. Chem. C. 10, 12929–12946 (2022)

    CAS  Google Scholar 

  24. H. Kumar, K. Bhardwaj, D.S. Dhanjal, E. Nepovimova, F. Șen, H. Regassa, K. Kuča, Int. J. Mol. Sci. 21, 8458 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. B. Sarangi, S.P. Mishra, N. Behera, Mater. Scie. Semic. Process. 147, 106723 (2022)

    CAS  Google Scholar 

  26. N.S. Alsaiari, F.M. Alzahrani, A. Amari, H. Osman, H.N. Harharah, N. Elboughdiri, M.A. Tahoon, Molecules 28, 463 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Munyai, L.M. Mahlaule-Glory, N.C. Hintsho-Mbita, Mater. Res. Express 9, 015001 (2022)

    CAS  Google Scholar 

  28. Y. Xu, S. Lou, C. **a, T. Xuan, H. Li, J. Lumin.Lumin 222, 117132 (2020)

    CAS  Google Scholar 

  29. D. Kumar, K.S. Vinayak, A.I.P. Conf, Proc. (2023). https://doi.org/10.1063/5.0111606

    Article  Google Scholar 

  30. C. Guo, Y. Huang, Q. Pan, T. Tao, F. Li, Q. Zhang, X. **, Q. Li, Semicond. Sci. Tech. 34, 035025 (2019)

    CAS  Google Scholar 

  31. L. He, L. Yang, B. Liu, J. Zhang, C. Zhang, S. Liu, S. Wang, J. Alloys compd. 787, 537–542 (2019)

    CAS  Google Scholar 

  32. K. Hasanirokh, A. Asgari, S. Mohammadi, JEOS: RP 17, 1–10 (2021)

    Google Scholar 

  33. A.J. Caires, A.A. Mansur, I.C. Carvalho, S.M. Carvalho, H.S. Mansur, Mater. Chem. Phys. 244, 122716 (2020)

    CAS  Google Scholar 

  34. T.P. Nguyen, T.B. Vu, Q.V. Lam, Opti. Mater. 110, 110537 (2020)

    CAS  Google Scholar 

  35. P.D. Huu, T.T. Phung, Bull. Electr. Eng. Inform. (BEEI) 11, 772–778 (2022)

    Google Scholar 

  36. A. Zazueta-Raynaud, A. Cordova-Rubio, R. Lopez-Delgado, J.E. Pelayo-Ceja, R.C. Carrillo-Torres, R. Sanchez-Zeferino, A. Ayon, MEMS and MOEMS DTIP (2019). https://doi.org/10.1109/DTIP.2019.8752671

    Article  Google Scholar 

  37. A. Dhupar, S. Kumar, H.S. Tuli, A.K. Sharma, V. Sharma, J.K. Sharma, Appl. Phys. A (2021). https://doi.org/10.1007/s00339-021-04425-9

    Article  Google Scholar 

  38. S. Basak, D. Nath, R. Das, J. Mol. Structure 1293, 136273 (2023)

    CAS  Google Scholar 

  39. E.M. Jubeer, M.A. Manthrammel, P.A. Subha, M. Shkir, K.P. Biju, S.A. AlFaify, Sci. Rep. 13, 16820 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. A.K. Thottoli, A.K. Achuthanunni, J. Nanostr. Chem. 3, 1–9 (2013)

    Google Scholar 

  41. P. Praus, R. Dvorsky, P. Kovar, L. Svoboda, Open Chem. 12, 312–317 (2014)

    CAS  Google Scholar 

  42. A.M. Abdalla, A.M. Ali, M. Al-Jarallah, B: Condens. Matter. 550, 235–243 (2018)

    CAS  Google Scholar 

  43. P.K. Upadhyay, V.K. Jain, A.K. Shrivastav, R. Sharma, Int. J. Eng. Technol. 7, 2768–2775 (2020)

    Google Scholar 

  44. S.C. Tudu, J. Kusz, M. Zubko, A. Bhattacharjee, Int. J. Nano Dimens. 11, 99–111 (2020)

    CAS  Google Scholar 

  45. U.S. Senapati, R. Athparia, Chalcogenide Lett. (2022). https://doi.org/10.15251/CL.2022.193.203

    Article  Google Scholar 

  46. R. Tintu, V.P.N. Nampoori, P. Radhakrishnan, S. Thomas, Opt. Mater. 33, 1221–1225 (2011)

    CAS  Google Scholar 

  47. A.J. Ahamed, K. Ramar, P.V. Kumar, J. Nanosci. Nanotechnol. 2, 148–150 (2016)

    Google Scholar 

  48. R. Biju, R. Ravikumar, C. Thomas, C.R. Indulal, J. Nanopart. Res.Nanopart. Res. 24, 117 (2022)

    CAS  Google Scholar 

  49. R. Tintu, V.P.N. Nampoori, P. Radhakrishnan, S. Thomas, J. Phys. D Appl. Phys. 44, 025101 (2010)

    Google Scholar 

  50. A.K. Kole, P. Kumbhakar, Results Phys. 2, 150–155 (2012)

    Google Scholar 

  51. Y. Liu, Z. Li, W. Zhong, L. Zhang, W. Chen, Q. Li, Nano scale Res. Lett. 9, 1–8 (2014)

    Google Scholar 

  52. S. Nazerdeylami, E. Saievar-Iranizad, M. Molaei, Int. J. Mod. Phys. Conf. Ser. 5, 127–133 (2012)

    CAS  Google Scholar 

  53. S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Solid state sci. 14, 299–304 (2012)

    CAS  Google Scholar 

  54. R. Tamrakar, M. Ramrakhiani, B.P. Chandra, Open Nanosci. J.Nanosci J. 2, 12–16 (2008)

    CAS  Google Scholar 

  55. M. Bhushan, R. Jha, R. Bhardwaj, R. Sharma, Bull. Mater. Sci. 44, 1–9 (2021)

    Google Scholar 

  56. C.S. Pathak, D.D. Mishra, V. Agarwala, M.K. Mandal, Ceram. Int. 38, 6191–6195 (2012)

    CAS  Google Scholar 

  57. X. Wang, J. Shi, Z. Feng, M. Li, C. Li, Phys. Chem. Chem. Phys. 13, 4715–4723 (2011)

    CAS  PubMed  Google Scholar 

  58. C. Rajkumar, R.K. Srivastava, Results in Phys. 15, 102647 (2019)

    Google Scholar 

  59. A.L. Curcio, L.F. da Silva, M.I.B. Bernardi, E. Longo, A. Mesquita, J. Lumin.Lumin. 206, 292–297 (2019)

    CAS  Google Scholar 

  60. R.K. Sehrawat, R. Priyanka, P. Malik, S. Maken, J. Mater. Sci. Mater. Electr. 32, 23486–23499 (2021)

    CAS  Google Scholar 

  61. L. Zhou, H. Wang, H. Yu, E. Amador, J. Xue, S. Wang, W. Chen, J. Mater. Chem. C (2023). https://doi.org/10.1039/D3TC02297H

    Article  Google Scholar 

  62. J. Jargus, J. Vitasek, J. Nedoma, V. Vasinek, R. Martinek, Materials 12, 2095 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. S.A. Khan, N.Z. Khan, M. Sohail, J. Ahmed, N. Alhokbany, S.M. Alshehri, X. Xu, J. Zhu, S. Agathopoulos, J. Mater. Chem. C. 9, 13041–13071 (2021)

    CAS  Google Scholar 

  64. A.K. Dehury, S.K. Behera, S.K. Chirauri, S. Basu, Y.S. Chaudhary, Chem. Asian J. (2022). https://doi.org/10.1002/asia.202200948

    Article  PubMed  Google Scholar 

  65. H. Lu, Z. Hu, H. Liu, Z. Fu, H. Dai, W. Zhang, R. Guo, ACS Appl. Nano Mater. (2023). https://doi.org/10.1021/acsanm.3c00494

    Article  Google Scholar 

  66. Z. Hu, H. Lu, W. Zhou, J. Wei, H. Dai, H. Liu, Z. **ong, F. **e, W. Zhang, R. Guo, J. Mater. Sci. Technol. 134, 189–196 (2023)

    CAS  Google Scholar 

  67. L. Kuichen, K. Zheng, H. **gjia, J. Zehao, He. Qiu, W. Lili, Acta Chim. Sinica Chim. Sinica 81, 1327 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge to the authorities of Nanoscience Research laboratory, Post Graduate Department of Physics, Sree Narayana College, Kollam, Kerala for providing the laboratory facilities to conduct this work. The authors extend their appreciation to TKMM College, Nangiarkulangara for the invaluable support provided during the work. We are also thankful to CLIF, University of Kerala for XRD, FTIR & PL measurements and STIC, Cochin University of Science and Technology, Kerala for SEM-EDX analysis. The first author is grateful to University of Kerala, Thiruvananthapuram for granting financial assistant through Kerala University Junior Research Fellowship.

Funding

No financial assistance was received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have made contribution to the conceptualization, methodology, validation, investigation, analysis, interpretation of data, drafting and writing review for the paper.

Corresponding author

Correspondence to R. Tintu.

Ethics declarations

Competing interests

The authors declared to have no competing financial interests or personal relationships that influence the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendran, A., Tintu, R. Green innovation: cool white light emission from inorganic ZnS nanoparticles with tunable structural and optical properties. J Mater Sci: Mater Electron 35, 812 (2024). https://doi.org/10.1007/s10854-024-12572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12572-x

Navigation