Log in

Cu/Ni-loaded oxygen vacancy-rich CeO2 rod derived from metal organic framework for efficient photothermal CO2 hydrogenation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photothermal catalytic CO2 reduction can combine photocatalysis and thermal catalysis by using full-spectrum solar energy to convert CO2 into high value-added chemicals. This can effectively alleviate the problems of excessive CO2 emissions and thermal catalytic energy waste. In this paper, a novel catalyst was prepared using Ce-MOF as a precursor to generate Cu/Ni/CeO2 for efficient reduction of CO2 to CO by hydrogenation. Due to the rod-like structure of CeO2 and the high dispersion of Cu and Ni nanoparticles, 10%Cu 5%Ni CeO2 can achieve a catalytic activity of 54.21 mmol g−1 h−1 in the full solar spectrum. The supported Cu and Ni metals are the active sites for catalytic reduction. Meanwhile, Cu and Ni enhanced the light absorption ability of the catalyst and the surface temperature under illumination. This is due to the hot charge carriers generated by LSPR effect in Ni and Cu metal nanoparticles, which can dissipate energy through local heating, thus increasing the temperature of the catalyst under illumination. It can be found that the CO2 reduction activity of photo-assisted thermocatalysis is higher than that of thermal catalysis under the same conditions. Therefore, the combined effect of the electrons generated by UV–Vis light and the heating effect of near-infrared light on catalyst could improve the catalytic activity. This work might provide a potential strategy for efficient photothermal reduction of CO2 in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data will be available on request from the authors.

References

  1. B. Deng, H. Song, K. Peng, Q. Li, J. Ye, Appl. Catal. B-Environ. 298, 120519 (2021)

    CAS  Google Scholar 

  2. L. **e, L. Wang, X. Liu, W. Zhao, S. Liu, X. Huang, Q. Zhao, Angew Chem. Int. Ed. (2024). https://doi.org/10.1002/anie.202316306

    Article  Google Scholar 

  3. L. Wang, F. Zhang, N. Sun, L. **e, T. Zhi, Q. Zhang, Z. Luo, X. Liu, S. Liu, Q. Zhao, Chem. Eng. J. 474, 145792 (2023)

    CAS  Google Scholar 

  4. L. Al-Ghussain, Environ. Prog. Sustain. 38, 13–21 (2019)

    CAS  Google Scholar 

  5. X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Chem. Rev. 120, 7984–8034 (2020)

    CAS  PubMed  Google Scholar 

  6. T. Kong, Y. Jiang, Y. **ong, Chem. Soc. Rev. 49, 6579–6591 (2020)

    CAS  PubMed  Google Scholar 

  7. Y. Han, H. Xu, Y. Su, Z. Xu, K. Wang, W. Wang, J. Catal. 370, 70–78 (2019)

    CAS  Google Scholar 

  8. N.J. Brown, A. García-Trenco, J. Weiner, E.R. White, M. Allinson, Y. Chen, P.P. Wells, E.K. Gibson, K. Hellgardt, M.S.P. Shaffer, C.K. Williams, ACS Catal. 5, 2895–2902 (2015)

    CAS  Google Scholar 

  9. Y. Sang, H. Liu, A. Umar, ChemCatChem. 7, 559–573 (2015)

    CAS  Google Scholar 

  10. C. Xu, J. Hong, P. Sui, M. Zhu, Y. Zhang, J.L. Luo, Phys. Sci. 1, 100101 (2020)

    Google Scholar 

  11. H. Liu, D. Thang Duy, L. Liu, X. Meng, T. Nagaoa, J. Ye, Appl. Catal. B-Environ. 209, 183–189 (2017)

    CAS  Google Scholar 

  12. B. Han, W. Wei, L. Chang, P. Cheng, Y.H. Hu, Acs Catal. 6, 494–497 (2016)

    CAS  Google Scholar 

  13. L. Wang, S. Zhang, Y. Liu, J. Rare Earth. 26, 66–70 (2008)

    Google Scholar 

  14. X. Zhang, X. Li, D. Zhang, N.Q. Su, W. Yang, H.O. Everitt, J. Liu, Nat. Commun. 8, 1–9 (2017)

    Google Scholar 

  15. A. Goguet, F. Meunier, J. Breen, R. Burch, M. Petch, J. Catal. 226, 382–392 (2004)

    CAS  Google Scholar 

  16. X.J. Wen, C.G. Niu, L. Zhang, C. Liang, H. Guo, G.M. Zeng, J. Catal. 358, 141–154 (2018)

    CAS  Google Scholar 

  17. Y. Huang, Y. Lu, Y. Lin, Y. Mao, G. Ouyang, H. Liu, S. Zhang, Y. Tong, J. Mater. Chem. A 6, 24740–24747 (2018)

    CAS  Google Scholar 

  18. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116, 5987–6041 (2016)

    CAS  PubMed  Google Scholar 

  19. H.P. Sun, X.P. Pan, G.W. Graham, H.W. Jen, R.W. McCabe, S. Thevuthasan, C.H.F. Peden, Appl. Phys. Lett. 87, 201915 (2005)

    Google Scholar 

  20. Q. Tan, Z. Shi, D. Wu, Int. J. Energy Res. 43, 5392–5404 (2019)

    CAS  Google Scholar 

  21. J. Guo, P.N. Duchesne, L. Wang, R. Song, M. **a, U. Ulmer, W. Sun, Y. Dong, J.Y.Y. Loh, N.P. Kherani, J. Du, B. Zhu, W. Huang, S. Zhang, G.A. Ozin, ACS Catal. 10, 13668–13681 (2020)

    CAS  Google Scholar 

  22. M.H. Zhu, P.F. Tian, M.E. Ford, J.C. Chen, J. Xu, Y.F. Han, I.E. Wachs, Acs Catal. 10, 7857–7863 (2020)

    CAS  Google Scholar 

  23. S.C. Yang, S.H. Pang, T.P. Sulmonetti, W.N. Su, J.F. Lee, B.J. Hwang, C.W. Jones, Acs Catal. 8, 12056–12066 (2018)

    CAS  Google Scholar 

  24. X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li, H. Hu, T. Kako, H. Iwai, A. Tanaka, J. Ye, Angew Chem. Int. Edit. 53, 11478–11482 (2014)

    CAS  Google Scholar 

  25. Q. Li, Y. Gao, M. Zhang, H. Gao, J. Chen, H. Jia, Appl. Catal. B-Environ. 303, 120905 (2022)

    CAS  Google Scholar 

  26. R.C. Maher, P.R. Shearing, E. Brightman, D.J.L. Brett, N.P. Brandon, L.F. Cohen, Adv. Sci. 3, 1500146 (2016)

    Google Scholar 

  27. T. Kajiwara, M. Fujii, M. Tsujimoto, K. Kobayashi, M. Higuchi, K. Tanaka, S. Kitagawa, Angew Chem. Int. Ed. 55, 2697–2700 (2016)

    CAS  Google Scholar 

  28. J. Qiu, X. Zhang, Y. Feng, X. Zhang, H. Wang, J. Yao, Appl. Catal. B-Environ. 231, 317–342 (2018)

    CAS  Google Scholar 

  29. Z. Ni, X. Djitcheu, X. Gao, J. Wang, H. Liu, Q. Zhang, Sci. Rep. 12, 1–10 (2022)

    Google Scholar 

  30. J. Zheng, Z. Wang, Z. Chen, S. Zuo, J. Rare Earth. 39, 790–796 (2021)

    CAS  Google Scholar 

  31. K. Chang, H. Zhang, M.J. Cheng, Q. Lu, Acs Catal. 10, 613–631 (2020)

    CAS  Google Scholar 

  32. B. Yang, Y. Wang, L. Li, B. Gao, L. Zhang, L. Guo, Catal. Sci. Technol. 12, 1159–1172 (2022)

    CAS  Google Scholar 

  33. F. Dong, Y. Meng, W. Han, H. Zhao, Z. Tang, Sci. Rep. 9, 1–14 (2019)

    Google Scholar 

  34. H.B. Li, Y.Y. Cui, Q.Q. Liu, W.L. Dai, ChemCatchem. 10, 619–624 (2018)

    CAS  Google Scholar 

  35. C. Zhu, X. Wei, W. Li, Y. Pu, J. Sun, K. Tang, H. Wan, C. Ge, W. Zou, L. Dong, Acs Sustain. Chem. Eng. 8, 14397–14406 (2020)

    CAS  Google Scholar 

  36. X. Chen, Q. Li, M. Zhang, J.J. Li, S.C. Cai, J. Chen, H.P. Jia, Acs Appl. Mater. Inter. 12, 39304–39317 (2020)

    CAS  Google Scholar 

  37. S.L. Prabavathi, K. Saravanakumar, C.M. Park, V. Muthuraj, Sep. Purif. Technol. 257, 117985 (2021)

    CAS  Google Scholar 

  38. Q. Chen, Y. Hao, Z. Song, M. Liu, D. Chen, B. Zhu, J. Chen, Z. Chen, Ecotoxicol. Environ. Saf. 225, 112742 (2021)

    CAS  PubMed  Google Scholar 

  39. P. Anandgaonker, G. Kulkarni, S. Gaikwad, A. Rajbhoj, Arab. J. Chem. 12, 1815–1822 (2019)

    CAS  Google Scholar 

  40. D. Mateo, J.L. Cerrillo, S. Durini, J. Gascon, Chem. Soc. Rev. 50, 2173–2210 (2021)

    CAS  PubMed  Google Scholar 

  41. H. Tang, Z. Tang, J. Bright, B. Liu, X. Wang, G. Meng, N. Wu, Acs Sustain. Chem. Eng. 9, 1500–1506 (2021)

    CAS  Google Scholar 

  42. J. Zou, Z. Si, Y. Cao, R. Ran, X. Wu, D. Weng, J. Phys. Chem. C 120, 29116–29125 (2016)

    CAS  Google Scholar 

  43. Y.Z.W. Weng, S.Y. Guan, L. Wang, H. Lu, X.M. Meng, G.I.N. Waterhouse, S.Y. Zhou, Small. 16, 1905184 (2020)

    CAS  Google Scholar 

  44. Z. Wu, C. Li, Z. Li, K. Feng, M. Cai, D. Zhang, S. Wang, M. Chu, C. Zhang, J. Shen, Z. Huang, Y. **ao, G.A. Ozin, X. Zhang, L. He, Acs Nano. 15, 5696–5705 (2021)

    CAS  PubMed  Google Scholar 

  45. Z.J. Wang, H. Song, H. Liu, J. Ye, Angew Chem. Int. Edit. 59, 8016–8035 (2020)

    CAS  Google Scholar 

  46. J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today. 32, 222–243 (2020)

    CAS  Google Scholar 

  47. S. Das, J. Perez-Ramirez, J. Gong, N. Dewangan, K. Hidajat, B.C. Gates, S. Kawi, Chem. Soc. Rev. 49, 2937–3004 (2020)

    CAS  PubMed  Google Scholar 

  48. R. Levinson, P. Berdahl, H. Akbari, Sol Energy Mat. Sol Cells. 89, 319–349 (2005)

    CAS  Google Scholar 

  49. Z.J. Cai, J.J. Dai, W. Li, K.B. Tan, Z.L. Huang, G.W. Zhan, J.L. Huang, Q.B. Li, ACS Catal. 10, 13275–13289 (2020)

    CAS  Google Scholar 

  50. W. Kim, G. Yuan, B.A. McClure, H. Frei, J. Am. Chem. Soc. 136, 11034–11042 (2014)

    CAS  PubMed  Google Scholar 

  51. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, Catal. Commun. 2, 195–200 (2001)

    CAS  Google Scholar 

  52. L. Wan, Q. Zhou, X. Wang, T.E. Wood, L. Wang, P.N. Duchesne, J. Guo, X. Yan, M. **a, Y.F. Lie, A.A. Jelle, U. Ulmer, J. Jia, T. Li, W. Sun, G.A. Ozin, Nat. Catal. 2, 889–898 (2019)

    CAS  Google Scholar 

  53. G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, X. Zhang, Appl. Surf. Sci. 383, 248–252 (2016)

    CAS  Google Scholar 

  54. L. Lin, S. Yao, Z. Liu, F. Zhang, N. Li, D. Vovchok, A. Martinez-Arias, R. Castaneda, J. Lin, S.D. Senanayake, D. Su, D. Ma, J.A. Rodriguez, J. Phy Chem. C 122, 12934–12943 (2018)

    CAS  Google Scholar 

  55. S.C. Yang, W.N. Su, J. Rick, S.D. Lin, J.Y. Liu, C.J. Pan, J.F. Lee, B.-J. Hwang, ChemSuschem. 6, 1326–1329 (2013)

    CAS  PubMed  Google Scholar 

  56. L. Wang, Y. Wang, Y. Cheng, Z. Liu, Q. Guo, H. Minh Ngoc, Z. Zhao, J. Mater. Chem. A 4, 5314–5322 (2016)

    CAS  Google Scholar 

  57. L. Giordano, J. Goniakowski, G. Pacchioni, Phys. Rev. B 64, 075417 (2001)

    Google Scholar 

  58. P. Zimmer, A. Tschope, R. Birringer, J. Catal. 205, 339–345 (2002)

    CAS  Google Scholar 

  59. X. Liu, P. Ramirez, de la J. Piscina, N. Toyir, Homs, Catal. Today. 296, 181–186 (2017)

    CAS  Google Scholar 

  60. K. Pokrovski, K.T. Jung, A.T. Bell, Langmuir. 17, 4297–4303 (2001)

    CAS  Google Scholar 

  61. K. Zhao, J. Qi, H. Yin, Z. Wang, S. Zhao, X. Ma, J. Wan, L. Chang, Y. Gao, R. Yu, Z. Tang, J. Mater. Chem. A 3, 20465–20470 (2015)

    CAS  Google Scholar 

  62. X. Zhang, D. Wang, M. **g, J. Liu, Z. Zhao, G. Xu, W. Song, Y. Wei, Y. Sun, ChemCatchem. 11, 2089–2098 (2019)

    CAS  Google Scholar 

  63. F. Sastre, A.V. Puga, L. Liu, A. Corma, H. Garcia, J. Am. Chem. Soc. 136, 6798–6801 (2014)

    CAS  PubMed  Google Scholar 

  64. G. Cao, X. Ye, S. Duan, Z. Cao, C. Zhang, C. Yao, X. Li, Colloids Surf. Physicochem. Eng. Aspects 656, 130398 (2023)

    CAS  Google Scholar 

  65. W.D. Zhang, Y. Wang, Y. Liang, A.L. Jiang, H. Gong, X.Y. Tian, W.S. Fu, J.Z. Liao, P. Chen, Y.Z. Ma, Front. Chem. 10, 974907 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. S.E. Collins, M.A. Baltanás, A.L. Bonivardi, J. Catal. 226, 410–421 (2004)

    CAS  Google Scholar 

  67. Y. **e, Y. Zhou, C. Gao, L. Liu, Y. Zhang, Y. Chen, Y. Shao, Sep. Purif. Technol. 303, 1222288 (2022)

    Google Scholar 

  68. J. Di, C. Chen, C. Zhu, P. Song, J. **ong, M. Ji, J. Zhou, Q. Fu, M. Xu, W. Hao, J. **a, S. Li, H. Li, Z. Liu, Acs Appl. Mater. Interfaces. 11, 30786–30792 (2019)

    CAS  PubMed  Google Scholar 

  69. T.H. Tan, B. **e, Y.H. Ng, S.F.B. Abdullah, H.Y.M. Tang, N. Bedford, R.A. Taylor, K.F. Aguey-Zinsou, R. Amal, J. Scott, Nat. Catal. 3, 1034–1043 (2020)

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 22278042), Natural Science Foundation of Jiangsu Province (No. SCZ2206800016), Natural Science Foundation of Jiangsu Higher Education Institutions (No. 20KJA50007), Science and Technology Support Program of Changzhou (CQ20220088), and Natural Science Foundation of Jiangsu Province (BK20220625).

Author information

Authors and Affiliations

Authors

Contributions

Deng Pan contributed toward investigation, formal analysis, and writing-original draft. Yanan Wang contributed toward methodology and writing-original draft. Liwei Lin contributed toward data curation and formal analysis. Yuzhe Zhang contributed toward methodology, and writing-review & editing. Man Zhou contributed toward resources, and writing-review & editing. Zhongyu Li contributed toward project administration, supervision, and funding acquisition. Song Xu contributed toward formal analysis and supervision.

Corresponding author

Correspondence to Zhongyu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Wang, Y., Lin, L. et al. Cu/Ni-loaded oxygen vacancy-rich CeO2 rod derived from metal organic framework for efficient photothermal CO2 hydrogenation. J Mater Sci: Mater Electron 35, 791 (2024). https://doi.org/10.1007/s10854-024-12561-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12561-0

Navigation