Log in

Composition-tunable structural and optical properties of dual-phase cesium tin bromide perovskite semiconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The inorganic lead-based metal halide perovskites are widely studied for optoelectronic applications because of their tunable structural, optical and electrical properties. On the other hand, due to the instability and toxicity of lead-based perovskites, it is difficult to apply them on a large-scale. The lead-free nature and air stability of dual-phase tin (Sn)-based halide perovskites make them as possible candidates to replace lead (Pb)-based perovskites. For the first time, Composition-tunable structural and optical properties of dual-phase CsSnBr3–CsSn2Br5, Cs2SnBr4–CsBr, and Cs4SnBr6–CsSnBr3 perovskite semiconductors were synthesized and comprehensively reported here. The perovskites were prepared using a composition (CsBr–SnBr2), mechano-chemical and water-induced solvent precipitation method. In addition, the structural, optical and thermal properties were investigated. XRD analysis confirms the layered crystal structure of perovskite composites. FESEM studies demonstrate the formation of aggregate crystals of various sizes. The optical absorption spectrum was used to calculate the enhanced optical properties. The bandgap was reduced from 2.61 to 2.27 eV. The PL spectrum confirms that light is emitting in the yellow and green color regions. The prepared perovskite semiconductors have the potential for various optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data described in this article is available as a preprint in the Social Science Research Network at https://doi.org/10.2139/ssrn.4231466.

References

  1. J. Tian, Q. Xue, Q. Yao, N. Li, C.J. Brabec, H. Yip, Adv. Energy Mater. 10, 2000183 (2020)

    Article  CAS  Google Scholar 

  2. S. Zhao, Q. Mo, B. Wang, W. Cai, R. Li, Z. Zang, Photon. Res. 10, 1039 (2022)

    Article  CAS  Google Scholar 

  3. H. Wang, S. Li, X. Liu, Z. Shi, X. Fang, J. He, Adv. Mater. 33, 2003309 (2021)

    Article  CAS  Google Scholar 

  4. Z. Wu, J. Yang, X. Sun, Y. Wu, L. Wang, G. Meng, D. Kuang, X. Guo, W. Qu, B. Du, C. Liang, X. Fang, X. Tang, Y. He, Sens. Actuators B 337, 129772 (2021)

    Article  CAS  Google Scholar 

  5. L. Peedikakkandy, P. Bhargava, RSC Adv. 6, 19857 (2016)

    Article  CAS  Google Scholar 

  6. W. **ang, S. Liu, W. Tress, Energy Environ. Sci. 14, 2090 (2021)

    Article  CAS  Google Scholar 

  7. V. Naresh, S. Singh, H. Soh, J. Lee, N. Lee, Mater. Today Nano 23, 100364 (2023)

    Article  CAS  Google Scholar 

  8. Z. Yang, S. Zhang, T. Sheng, X. Lv, X. Wei, S. Qin, S. Yi, J. Zhao, J. Mater. Chem. A 11, 22020 (2023)

    Article  CAS  Google Scholar 

  9. M. Ren, X. Qian, Y. Chen, T. Wang, Y. Zhao, J. Hazard. Mater. 426, 127848 (2022)

    Article  CAS  PubMed  Google Scholar 

  10. J. Li, J. Duan, X. Yang, Y. Duan, P. Yang, Q. Tang, Nano Energy 80, 105526 (2021)

    Article  CAS  Google Scholar 

  11. T. Wu, X. Liu, X. Luo, X. Lin, D. Cui, Y. Wang, H. Segawa, Y. Zhang, L. Han, Joule 5, 863 (2021)

    Article  CAS  Google Scholar 

  12. L.-J. Chen, C.-R. Lee, Y.-J. Chuang, Z.-H. Wu, C. Chen, J. Phys. Chem. Lett. 7, 5028 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady, S.E. Dutton, A. Rao, R.H. Friend, D. Credgington, N.C. Greenham, M.L. Böhm, J. Am. Chem. Soc. 138, 2941 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. M.A. Islam, Md.Z. Rahaman, S.K. Sen, AIP Adv. 11, 075109 (2021)

    Article  CAS  Google Scholar 

  15. S. Gupta, T. Bendikov, G. Hodes, D. Cahen, ACS Energy Lett. 1, 1028 (2016)

    Article  CAS  Google Scholar 

  16. A. Wang, Y. Guo, F. Muhammad, Z. Deng, Chem. Mater. 29, 6493 (2017)

    Article  CAS  Google Scholar 

  17. S. Bonomi, M. Patrini, G. Bongiovanni, L. Malavasi, RSC Adv. 10, 28478 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. C.-F. Lai, Y.-C. Chang, Y.-C. Tien, A.C.S. Appl, Nano Mater. 4, 1924 (2021)

    CAS  Google Scholar 

  19. H. Wu, Z. Lin, J. Song, Y. Zhang, Y. Guo, W. Zhang, R. Huang, Nanomaterials 13, 2259 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Romani, A. Bala, V. Kumar, A. Speltini, A. Milella, F. Fracassi, A. Listorti, A. Profumo, L. Malavasi, J. Mater. Chem. C 8, 9189 (2020)

    Article  CAS  Google Scholar 

  21. D. Fang, Y. Tong, F. Xu, B. Mi, D. Cao, Z. Gao, J. Solid State Chem. 294, 121902 (2021)

    Article  CAS  Google Scholar 

  22. L. Cao, S.-M. Gu, B. Liu, L. Huang, J. Zhang, Y. Zhu, J. Wang, ACS Appl. Mater. Interfaces 15, 30409 (2023)

    Article  CAS  PubMed  Google Scholar 

  23. A. Kumar, N. Pandey, D. Punetha, R. Saha, S. Chakrabarti, ACS Appl. Electron. Mater. 5, 3144 (2023)

    Article  CAS  Google Scholar 

  24. H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang, Y. Shang, Z. Ning, W. Zhang, W. Zheng, Y. Yan, S.V. Kershaw, L. Zhang, A.L. Rogach, X. Yang, Nat. Commun. 10, 665 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Md.A. Adib, F. Sharmin, M.A. Basith, Nanoscale Adv. 5, 6194 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Tan, Y. Zhou, D. Lu, X. Feng, Y. Liu, M. Zhang, F. Lu, Y. Huang, X. Xu, Chin. Phys. B 32, 117802 (2023)

    Article  Google Scholar 

  27. K. **e, S. Wei, A. Alhadhrami, J. Liu, P. Zhang, A.Y. Elnaggar, F. Zhang, M.H.H. Mahmoud, V. Murugadoss, S.M. El-Bahy, F. Wang, C. Li, G. Li, Adv. Compos. Hybrid Mater. 5, 1423 (2022)

    Article  CAS  Google Scholar 

  28. K. Děcká, A. Suchá, J. Král, I. Jakubec, M. Nikl, V. Jarý, V. Babin, E. Mihóková, V. Čuba, Nanomaterials 11, 1935 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  29. C.-Y. Huang, S.-H. Huang, C.-L. Wu, Z.-H. Wang, C.-C. Yang, A.C.S. Appl, Nano Mater. 3, 11760 (2020)

    CAS  Google Scholar 

  30. Y. Qiao, Y. Li, Y. Huang, H. Dong, Q. Wang, W. **e, H. Zeng, Adv. Photon. Res. 3, 2200020 (2022)

    Article  CAS  Google Scholar 

  31. S. Devesa, A.P. Rooney, M.P. Graça, D. Cooper, L.C. Costa, Mater. Sci. Eng. B 263, 114830 (2021)

    Article  CAS  Google Scholar 

  32. M. Doumeng, L. Makhlouf, F. Berthet, O. Marsan, K. Delbé, J. Denape, F. Chabert, Polym. Testing 93, 106878 (2021)

    Article  CAS  Google Scholar 

  33. X. Xu, Y. Sun, D. He, Z. Liang, G. Liu, S. Xu, Z. Li, L. Zhu, X. Pan, J. Mater. Chem. C 9, 208 (2021)

    Article  CAS  Google Scholar 

  34. S. Du, J. Yang, S. Qu, Z. Lan, T. Sun, Y. Dong, Z. Shang, D. Liu, Y. Yang, L. Yan, X. Wang, H. Huang, J. Ji, P. Cui, Y. Li, M. Li, Materials 15, 3185 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. X. Yang, Y. Wang, J. Jiang, M. Li, Z. Tang, H. Cai, F. Zhang, X. Wu, APL Mater. 8, 021102 (2020)

    Article  CAS  Google Scholar 

  36. I. Ali, R. Tariq, S.R. Naqvi, A.H. Khoja, M.T. Mehran, M. Naqvi, N. Gao, J. Energy Inst. 95, 30 (2021)

    Article  CAS  Google Scholar 

  37. A.W. Coats, J.P. Redfern, Nature 201, 68 (1964)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to B.S.Abdur Rahman Crescent Institute of Science and Technology, Chennai – 48, for providing University JRF (Lr. No. 958/Dean(R)/2021 date:24.08.21), and Crescent Seed Money (CSD/CSM/6 Order date:11.03.2021), We acknowledge the XRD FACILITY at SRMIST set up with support from MNRE (Project No. 31/03/2014-15/PVSE-R&D), Government of India. We acknowledge SRMIST for the high resolution scanning electron microscope (HR-SEM) facility. Central Instrumentation Facility, Pondicherry University, Puducherry-605014 provided the UV and Pl studies. The Department of Chemistry, Gandhigram Rural Institute, Dindugal provided the TGA analysis.

Author information

Authors and Affiliations

Authors

Contributions

N. Gopinathan and S. Sathik Basha both contributed to the conception, experimental design, carrying out measurements and manuscript composition. R.Amiruddin contributed to the carrying out measurements and manuscript composition. M.Mubeen contributed to manuscript composition

Corresponding author

Correspondence to S. Sathik Basha.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or competing interests to the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinathan, N., Sathik Basha, S., Mubeen, M. et al. Composition-tunable structural and optical properties of dual-phase cesium tin bromide perovskite semiconductors. J Mater Sci: Mater Electron 35, 627 (2024). https://doi.org/10.1007/s10854-024-12364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12364-3

Navigation