Log in

The effect of metal electrodes and deposition angle on linearity of sculptured TiO2 humidity microsensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the sensitivity and linearity properties of capacitive based titanium dioxide (TiO2) humidity microsensors with different materials used as electrodes have been investigated. The TiO2 thin films were grown on either Ti or TiN microinterdigitated structure as contact electrodes utilizing glancing angle deposition (GLAD) electron beam evaporator. The crystallinity and surface morphology of the prepared thin films were characterized by field emission scanning electron microscope (FE-SEM). The anatase phase structure of TiO2 thin films and the porous-like nanocrystalline TiO2 films sculptured by GLAD has been observed. The sensitivity of TiO2/Ti-electrode and TiO2/TiN electrode humidity sensors have been measured by current–voltage and capacitance–voltage. The capacitive sensors with Ti electrodes show better sensitivity and linearity than the sensors with TiN electrodes. The results show that the sensitivity of 1.17 × 10–11 F/%RH and linearity of 0.97 were achieved for our sensor with Ti microinterdigitated electrodes and porous-like nanocrystalline TiO2 films grown at 70° glancing angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. C. Ku, C. Chung, Advances in humidity nanosensors and their application: Review. Sensors. 23, 2328 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Z. Duan, Y. Jiang, H. Tai, Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C. 9, 14963–14980 (2021)

    Article  CAS  Google Scholar 

  3. N.M. Pereira, N.P. Rezende, T.H.R. Cunha, A.P.M. Barboza, G.G. Silva, D. Lippross, B.R.A. Neves, H. Chacham, A.S. Ferlauto, R.G. Lacerda, Aerosol-printed MoS2 ink as a high sensitivity humidity sensor. ACS Omega 7, 9388 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. U. Kang, K.D. Wise, A high-speed capacitive humidity sensor with on-chip thermal reset. IEEE Trans. Electron Devices 47, 702–710 (2000)

    Article  CAS  Google Scholar 

  5. J.R. McGhee, J.S. Sagu, D.J. Southee, P.S.A. Evans, K.G.U. Wijayantha, Printed, fully metal oxide, capacitive humidity sensors using conductive indium tin oxide inks. ACS Appl. Electron. Mater. 2(11), 3593–3600 (2020)

    Article  CAS  Google Scholar 

  6. Z.M. Rittersma, Recent achievements in miniaturised humidity sensors–a review of transduction techniques. Sens. Actuators A Phys. 96, 196–210 (2022)

    Article  Google Scholar 

  7. S. Mishra, A.K. Singh, Optical sensors for water and humidity and their further applications. Coord. Chem. Rev. 445, 214063 (2021)

    Article  CAS  Google Scholar 

  8. G. Korotcenkov, Handbook of humidity measurement, vol. 2: electronic and electrical humidity sensors, (CRC Press, 2019)

  9. B.A. Kuzubasoglu, Recent studies on the humidity sensor: a mini review. ACS Appl. Electron. Mater. 4, 4797–4807 (2022)

    Article  Google Scholar 

  10. Y. Miao, H. Lin, B. Li, T. Dong, C. He, J. Du, X. Zhao, Z. Zhou, J. Su, H. Wang, Y. Dong, B. Lu, L. Dong, H.H. Radamson, Review of Ge(GeSn) and InGaAs avalanche diodes operating in the SWIR spectral region. Nanomaterials 13, 606 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Miao, G. Wang, Z. Kong, B. Xu, X. Zhao, X. Luo, H. Lin, Y. Dong, B. Lu, L. Dong, J. Zhou, J. Liu, H.H. Radamson, Review of Si-based GeSn CVD growth and optoelectronic applications. Nanomaterials 11, 2556 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H. Nilsson, W. **ong, B. Xu, Y. Li, H.H. Radamson, Silicon nanowires for gas sensing: a review. Nanomaterials 10, 2215 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Zhao, W. Zhu, X. Feng, S. Yang, Z. Liu, S. Tang, D. Chen, Q. Guo, G. Wang, G. Ding, Role of interfacial 2D graphene in high performance 3D graphene/germanium Schottky junction humidity sensors. J. Mater. Chem. C. 8, 14196 (2020)

    Article  CAS  Google Scholar 

  14. J. Samà, M.S. Seifner, G. Domènech-Gil, J. Santander, C. Calaza, M. Moreno, I. Gràcia, S. Barth, A. Romano-Rodríguez, Low temperature humidity sensor based on Ge nanowires selectively grown on suspended microhotplates. Sens. Actuators B 243, 669–677 (2017)

    Article  Google Scholar 

  15. P. Nowak, W. Maziarz, A. Rydosz, K. Kowalski, M. Ziabka, K. Zakrzewska, SnO2/TiO2 thin film n-n heterostructures of improved sensitivity to NO2. Sensors 20, 6830 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A.T. Wu, M. Seto, M.J. Brett, Capacitive SiO humidity sensors with novel microstructures. Sens. Mater. 11, 493–505 (1999)

    CAS  Google Scholar 

  17. A. Barranco, A. Borras, A.R. González-Elipe, A. Palmero, Perspectives on oblique angle deposition of thin films: from fundamentals to devices. Prog. Mater. Sci. 76, 59–153 (2016)

    Article  CAS  Google Scholar 

  18. H.H. von Radamson, A. Hallén, I. Sychugov, A. Azarov, in Analytical Methods and Instruments for Micro- and Nanomaterials, 1st edn. (Springer, Cham, 2023), pp.197–240

    Google Scholar 

  19. V.E. Vrakatseli, A.N. Kalarakis, A.G. Kalampounias, E.K. Amanatides, D.S. Mataras, Glancing angle deposition effect on structure and light-induced wettability of RF-sputtered TiO2 thin films. Micromachines 9, 389 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  20. M. Liu, C. Wang, N. Kim, High-sensitivity and low-hysteresis porous MIM-type capacitive humidity sensor using functional polymer mixed with TiO2 microparticle. Sensors 17, 284 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received for conducting the experiments in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PP. The first draft of the manuscript was written by PP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mongkol Ekpanyapong.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phinmuang, P., Ekpanyapong, M. The effect of metal electrodes and deposition angle on linearity of sculptured TiO2 humidity microsensors. J Mater Sci: Mater Electron 35, 574 (2024). https://doi.org/10.1007/s10854-024-12321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12321-0

Navigation