Log in

Enhanced low-working temperature 2-butanone gas-sensing performance of N-doped ZnO mesoporous nanosheets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, N-doped ZnO (ZnON) mesoporous nanosheets were prepared via a two-step growth strategy, which consisted of a low temperature hydrothermal method and nitriding annealing process, and used to construct low-working temperature gas sensor for 2-Butanone selective detection successfully. The mesoporous nanosheets were characterized by XRD, SEM, BET, and XPS, and the effects of nitriding temperature on structure and gas sensitivity were discussed. ZnON series materials still retained channel structure, while adding an additional absorption band in the range of 500–650 nm, which was generated by N-do**. The optimal nitriding temperature was 450 °C and the related ZnON-450 gas sensor had the best response to 2-butanone vapor at a low-working temperature of 130 °C, and the sensitivity to 100 ppm 2-butanone was 23.3, which was 19 times higher than that of pure ZnO-450. The enhanced gas-sensing performance of ZnON-450 was discussed, which could be attributed to the synergy effect of shallow energy levels introduced by N-do**, nucleophilic hanging groups of -NH2 and specific mesoporous nanosheet structure. This work provides a promising route for the well development of low-working temperature N-doped electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Y.Q. Zhang, C. Wang, L.J. Zhao, F.M. Liu, X.Y. Sun, X.L. Hu, G.Y. Lu, Sens. Actuators B chem. 341, 130039 (2021)

    Article  CAS  Google Scholar 

  2. R.K. Zhang, J.X. Wang, H. Cao, Molecules. 25, 3552 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. X.H. Liu, X.X. Qin, H.M. Ji, M.J. Wang, J. Alloys Compd. 772, 263–271 (2019)

    Article  CAS  Google Scholar 

  4. Y.Y. Weng, L.C. Zhang, W. Zhu, Y. Lv, J. Mater. Chem. A 3, 7132–7138 (2015)

    Article  CAS  Google Scholar 

  5. P.M. Bos, G. de Mik, P.C. Bragt, Am. J. Ind. Med. 20, 175–194 (1991)

    Article  CAS  PubMed  Google Scholar 

  6. X.A. Fu, M. Li, R.J. Knipp, M.H. Nantz, M. Bousamra, Cancer Med. 3, 174–181 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. Z. Li, J. Shu, P. Zhang, W. Sun, B. Yang, H. Zhang, Cancer Biomark. 16, 477–487 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Saalberg, M. Wolff, Clin. Chim. Acta. 459, 5–9 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. J. Pereira, P. Porto-Figueira, C. Cavaco, K. Taunk, S. Rapole, R. Dhakne, H. Nagarajaram, J.S. Camara, Metabolites. 5, 3–55 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Q. Zhang, H. Zhang, M.K. Xu, Z.R. Shen, Q. Wei, Chin. Chem. Lett. 29, 538–542 (2018)

    Article  CAS  Google Scholar 

  11. G.C.N. Vioto, T.M. Perfecto, C.A. Zito, D.P. Volanti, Ceram. Int. 46, 22692–22698 (2020)

    Article  CAS  Google Scholar 

  12. W.X. Liu, J.B. Sun, Y.N. Li, D.R. Kong, B.Y. Song, X.F. Zhang, Z.P. Deng, Y.M. Xu, L.H. Huo, S. Gao, Sens. Actuators B chem. 377, 133054 (2023)

    Article  CAS  Google Scholar 

  13. P. Wang, T. Dong, C.C. Jia, P. Yang, Sens. Actuators B chem. 288, 1–11 (2019)

    Article  CAS  Google Scholar 

  14. S.G. Yu, H.Y. Zhang, C. Chen, C.C. Lin, Sens. Actuators B chem. 287, 526–534 (2019)

    Article  CAS  Google Scholar 

  15. Z. Shen, X.D. Zhang, X.H. Ma, Y. Chen, M. Liu, C. Chen, S.P. Ruan, J. Alloys Compd. 731, 1029–1036 (2018)

    Article  CAS  Google Scholar 

  16. H.B. Na, X.F. Zhang, Z.P. Deng, Y.M. Xu, L.H. Huo, S. Gao, ACS Appl. Mater. Interfaces. 11, 11627–11635 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667–673 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. M. Tricoli, A. Righettoni, Teleki, Angew Chem. Int. Ed. Engl. 49, 7632–7659 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. C.N. Wang, Y.L. Li, F.L. Gong, Y.H. Zhang, S.M. Fang, H.L. Zhang, Chem. Rec. 20, 1553–1567 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. F.D. Qu, Y. Yuan, R. Guarecuco, M. Yang, Small. 12, 3128–3133 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. C.J. Zhang, M.Y. Jia, Z.Y. Xu, W.P. **ong, Z.H. Yang, J. Cao, H.H. Peng, H.Y. Xu, Y.P. **ang, Y. **g, Chem. Eng. J. 430, 132652 (2022)

    Article  CAS  Google Scholar 

  22. H.M. Zhu, Z.Y. Yuan, Y.B. Shen, C. Han, H.Y. Ji, Z.Z. Mu, F.L. Meng, Sens. Actuators B chem. 373, 132726 (2022)

    Article  CAS  Google Scholar 

  23. H.F. Fu, Z.Y. Feng, S.S. Liu, P. Wang, C. Zhao, C.C. Wang, Chin. Chem. Lett. 34, 107425 (2023)

    Article  CAS  Google Scholar 

  24. J.F. Hu, C.M. Yin, M. Cheng, T. Wei, Q.Q. Liu, W.F. Li, Y. Ling, Y.F. Zhang, B. Liu, J. Alloys Compd. 892, 162243 (2022)

    Article  CAS  Google Scholar 

  25. Q.Y. Li, Y. Shen, T. Li, M. Cao, F. Gu, L.J. Wang, Sens. Actuators B chem. 314, 128032 (2020)

    Article  CAS  Google Scholar 

  26. Y. Liu, H. Ji, Z. Yuan, F. Meng, Sens. Actuators B chem. 374, 132787 (2023)

    Article  CAS  Google Scholar 

  27. T. Haldar, U. Kumar, B.C. Yadav, V.V.R.K. Kumar, J. Alloys Compd. 856, 158157 (2021)

    Article  CAS  Google Scholar 

  28. D. Raoufi, T. Raoufi, Appl. Surf. Sci. 255, 5812–5817 (2009)

    Article  CAS  Google Scholar 

  29. H. Wang, Y. Qu, H. Chen, Z.D. Lin, K. Dai, Sens. Actuators B chem. 201, 153–159 (2014)

    Article  CAS  Google Scholar 

  30. J.C. Groen, L.A.A. Peffer, J. Pérez-Ramírez, Microporous Mesoporous Mater. 60, 1–17 (2003)

    Article  CAS  Google Scholar 

  31. K. Prasad, S. Sreenivasulu, P. Gangadhara, Venkateswarlu, J. Alloys Compd. 700, 252–258 (2017)

    Article  CAS  Google Scholar 

  32. K. Sun, G. Zhan, H. Chen, S. Lin, Sensors. 21, 8269 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. T.L. Ling, M. Ahmad, L.Y. Heng, Anal. Methods. 5, 6709–6714 (2013)

    Article  Google Scholar 

  34. M.C. Zhang, E.T. Kang, K.G. Neoh, K.L. Tan, Colloids Surf. A 176, 139–150 (2001)

    Article  CAS  Google Scholar 

  35. M.J. Zhou, J.H. Yan, P. Cui, Mater. Lett. 89, 258–261 (2012)

    Article  CAS  Google Scholar 

  36. X.M. Yang, D. Salado-Leza, E. Porcel, C.R. Gonzalez-Vargas, F. Savina, D. Dragoe, H. Remita, S. Lacombe, Int. J. Mol. Sci. 21, 1619 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Zhang, Y.Y. Wang, S.S. Zheng, H.G. Xue, H. Pang, Chem. NanoMat. 5, 79–84 (2019)

    CAS  Google Scholar 

  38. L.L. Sun, Y. Guo, Y.C. Liu, R.H. Ni, G. Chen, X.S. Wei, Z.B. An, Z. Jiao, Sens. Actuators B chem. 371, 132533 (2022)

    Article  CAS  Google Scholar 

  39. X.J. Li, Y.W. Li, G. Sun, B. Zhang, Y. Wang, Z.Y. Zhang, Sens. Actuators B chem. 304, 127374 (2020)

    Article  CAS  Google Scholar 

  40. G.Z. **ng, D.D. Wang, B. Yao, L.F.N.A. Qune, T. Yang, Q. He, J.H. Yang, L.L. Yang, J. Appl. Phys. 108, 083710 (2010)

    Article  Google Scholar 

  41. T. Palaniselvam, B.P. Biswal, R. Banerjee, S. Kurungot, Chemistry. 19, 9335–9342 (2013)

    Article  CAS  PubMed  Google Scholar 

  42. C.L. Perkins, S.H. Lee, X.N. Li, S.E. Asher, T.J. Coutts, J. Appl. Phys. 97, 034907 (2005)

    Article  Google Scholar 

  43. Y.Q. Zhang, C. Wang, F.M. Liu, X.Y. Sun, X.H. Guo, L.J. Zhao, G.Y. Lu, Sens. Actuators B chem. 363, 131845 (2022)

    Article  CAS  Google Scholar 

  44. E.K. Liu, B.S. Zhu, J.S. Luo, The physics of semiconductors, 7th edn. (Publishing House of Electronics Industry, Bei **g, 2011), pp.108–110

    Google Scholar 

  45. P.C. Chen, S. Sukcharoenchoke, K. Ryu, L. Gomez de Arco, A. Badmaev, C. Wang, C. Zhou, Adv. Mater. 22, 1900–1904 (2010)

    Article  CAS  PubMed  Google Scholar 

  46. A. Trapalis, J. Heffernan, I. Farrer, J. Sharman, A. Kean, J. Appl. Phys. 120, 205102 (2016)

    Article  Google Scholar 

  47. M. Gomez-Castano, A. Redondo-Cubero, L. Vazquez, J.L. Pau, ACS Appl. Mater. Interfaces. 8, 29163–29168 (2016)

    Article  CAS  PubMed  Google Scholar 

  48. W. Yang, X. **ao, B.J. Fang, H.X. Deng, J. Alloys Compd. 860, 158410 (2021)

    Article  CAS  Google Scholar 

  49. C.A. Zito, T.M. Perfecto, T.N.T. Oliveira, D.P. Volanti, Mater. Lett. 223, 142–145 (2018)

    Article  CAS  Google Scholar 

  50. Q.N. Zhao, Z.Z. He, Y.D. Jiang, Z. Yuan, H.R. Wu, C.L. Sue, H.L. Tai, Front. Mater. 5, 82 (2019)

    Article  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 11775139) and Cooperation Fund of Jiangsu Zhongzheng Ceramic Technology Company.

Author information

Authors and Affiliations

Authors

Contributions

YZ contributed to material preparation, data collection, and writing—original draft. YS contributed to investigation, methodology and supervision. WZ, ZS contributed to formal analysis, and writing—review and editing. FG, LW contributed to supervision, validation and resources.

Corresponding author

Correspondence to Yue Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shen, Y., Zhang, W. et al. Enhanced low-working temperature 2-butanone gas-sensing performance of N-doped ZnO mesoporous nanosheets. J Mater Sci: Mater Electron 35, 485 (2024). https://doi.org/10.1007/s10854-024-12284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12284-2

Navigation