Log in

Preparation of Cu2O/ g-C3N4-modified TiO2 composite catalysts by a two-step method: degradation of RhB in sunlight

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To deal with water pollution, photocatalytic degradation has become a more prominent technology in this field. In this paper, Cu2O and g-C3N4 were added to TiO2 by calcination and coupling, which greatly improved the catalytic efficiency of titanium dioxide. Using the smaller band gap of Cu2O and g-C3N4, the corresponding sunlight can be greatly increased, making up for the shortcomings of TiO2 which can only respond to ultraviolet light. Rhodamine B was used to simulate organic pollutants. RhB can be oxidized directly by photogenic holes and •OH radicals. Moreover, heterojunction can be formed between Cu2O, TiO2, and g-C3N4, which further promotes the spatial separation of photoelectron-hole pairs generated by the formation of internal electric fields. Compared with pure TiO2, the efficiency is increased by 2.5x. This study provides an effective way to improve the photocatalytic performance of TiO2 and provides a new idea for organic dye treatment and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. C. Loka, K.-S. Lee, Mater. Res. Bull. 137, 111192 (2021)

    Article  CAS  Google Scholar 

  2. W. Fan, Z. Shi, X. Yang, M. Cui, X. Wang, D. Zhang, H. Liu, L. Guo, Water Res. 46, 5981–5988 (2012)

    Article  CAS  Google Scholar 

  3. V. Eskizeybek, F. Sarı, H. Gülce, A. Gülce, A. Avcı, Appl. Catal. B 119–120, 197–206 (2012)

    Article  Google Scholar 

  4. S. Murgolo, S. Franz, H. Arab, M. Bestetti, E. Falletta, G. Mascolo, Water Res. 164, 114920 (2019)

    Article  CAS  Google Scholar 

  5. M. Xu, Y. Deng, S. Li, J. Zheng, J. Liu, P.-L. Tremblay, T. Zhang, Chemosphere 312, 137249 (2023)

    Article  CAS  Google Scholar 

  6. Z.M. He, Y.M. **a, B. Tang, X.F. Jiang, Mater. Lett. 184, 148–151 (2016)

    Article  CAS  Google Scholar 

  7. Z. Hu, M. Ge, C. Guo, Chemosphere 268, 128834 (2021)

    Article  CAS  Google Scholar 

  8. H. Alshaikh, A. Shawky, L.S. Roselin, J. Environ. Chem. Eng. 9, 106778 (2021)

    Article  CAS  Google Scholar 

  9. H. Park, Y. Park, W. Kim et al., J. Photochem. Photobiol. C 15, 1–20 (2013)

    Article  CAS  Google Scholar 

  10. S.A. Rawoola, M.R. Paia, Appl. Catal. B 221, 443–458 (2018)

    Article  Google Scholar 

  11. G. Zeng, H. You, Chem. Engin J. 412, 128498 (2021)

    Article  CAS  Google Scholar 

  12. Z. **ong, Z. Lei, Appl. Catal. B 219, 412–424 (2017)

    Article  CAS  Google Scholar 

  13. P. Gu, S. Zhang, R. Ma, Sep. Purif. 288, 120641 (2022)

    Article  CAS  Google Scholar 

  14. N.P.S. Acharyulu, C. Srinivasu, Mater. Today Proc. 27, 1282–1288 (2020)

    Article  CAS  Google Scholar 

  15. X.-N. Wei, H.-L. Wang, J. Alloys Compd. 763, 844–853 (2018)

    Article  CAS  Google Scholar 

  16. X. Liu, M. Cui, K. Cui, Chemosphere 294, 133700 (2022)

    Article  CAS  Google Scholar 

  17. G. Sarto, F. Lopes, F.R. dos Santos, P.S. Parreira, L.C. Almeida, Appl. Radiat. Isot. 151, 124–128 (2019)

    Article  CAS  Google Scholar 

  18. S. Vignesh, G. Palanisamy, M. Srinivasan, N. Elavarasan, Diam. Relat. Mater. 120, 108606 (2021)

    Article  CAS  Google Scholar 

  19. X. Chen, K. Cui, Z. Hai, Mater. Lett. 297, 129921 (2021)

    Article  CAS  Google Scholar 

  20. G. Li, X. Nie, J. Chen, Q. Jiang, Water Res. 86, 17–24 (2015)

    Article  CAS  Google Scholar 

  21. L. Huang, F. Peng, F.S. Ohuchi, Surf. Sci. 603, 2825–2834 (2009)

    Article  CAS  Google Scholar 

  22. Y.-J. Liou, Y.J. Chen, B.-R. Chen, L.-M. Lee, Surf. Coat Technol. 231, 535–538 (2013)

    Article  CAS  Google Scholar 

  23. C. Yin, Y. Liu, X. Lv, S. Lv, Appl. Surf. Sci. 601, 154249 (2022)

    Article  CAS  Google Scholar 

  24. L. Wang, M. Yu, C. Wu, N. Deng, C. Wang, Adv. Synth. Catal. 358, 2631–2641 (2016)

    Article  CAS  Google Scholar 

  25. Y. Zeng, Y. Xu, D. Zhong, H. Yao, N. Zhong, J. Hazard Mater. 425, 127967 (2022)

    Article  CAS  Google Scholar 

  26. H. Gong, Y. Zhang, Y. Cao, M. Luo, Z. Feng, Appl. Catal. B 237, 309–317 (2018)

    Article  CAS  Google Scholar 

  27. T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, Appl. Surf. Sci. 255, 2730–2734 (2008)

    Article  CAS  Google Scholar 

  28. H. Shen, J. Wang, J. Jiang, B. Luo, B. Mao, Chem. Eng. J. 313, 508–517 (2017)

    Article  CAS  Google Scholar 

  29. Z.M. He, H.P. Yang, Y.X. Huang (2023) Small , 2207370

  30. B. Dai, Y. Li, J. Xu, C. Sun, S. Li, W. Zhao, Appl. Surf Sci. 592, 153309 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China ( Grant Number: 11864034, 11964035 ).

Author information

Authors and Affiliations

Authors

Contributions

JX: Conceptualization, methodology, visualization, writing—review & editing, supervision; SM: resources, review and editing; TW: Investigation, methodology, formal analysis, writing manuscript.

Corresponding author

Correspondence to Shuyi Ma.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Ma, S. & Wang, T. Preparation of Cu2O/ g-C3N4-modified TiO2 composite catalysts by a two-step method: degradation of RhB in sunlight. J Mater Sci: Mater Electron 34, 2249 (2023). https://doi.org/10.1007/s10854-023-11688-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11688-w

Navigation