Log in

Au NPs-incorporated NiS/RGO hybrid composites for efficient visible light photocatalytic hydrogen evolution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hydrogen evolution reaction (HER) through electrocatalytic water splitting is regarded as a promising route to produce hydrogen in a large scale. Designing a low-cost, large-scale, and highly active electrolytic hydrogen production catalyst is still a huge challenge. Incorporation of high-loading redox-active materials with small amounts of graphene is a general protocol to achieve high-performance catalysts. Herein, reduced graphene oxide (RGO) and Au NPs cocatalysts-modified NiS hybrid composite photocatalysts were successfully synthesized via a facile hydrothermal method for hydrogen evolution reaction (HER). XRD results suggest the NiS with rhombohedral phase (# JCPDS No. 65-2117). Both SEM and TEM results reveal that Au with NiS sample has clear spherical-shaped nanoparticles sizes in the range of 30–40 nm are coated on the rGO nanosheets. The estimated optical band gap energy is in the order of Au NPs/NiS@rGO (2.36 eV) < Nis@rGO (2.67 eV) < pure NiS (2.91 eV). The surface areas of NiS, NiS@rGO, and Au-NiS@rGO were calculated to be 64.58, 87.6, and 106.35 m2g−1, respectively. The Au-NiS@rGO exhibits significantly enhanced catalytic activity for hydrogen evolution reaction (HER) in both the acid and alkaline electrolytes in comparison with the pristine NiS. The Au-NiS@rGO delivers a striking catalytic kinetic metrics of a small Tafel slope of 54 mV dec−1, a low overpotential of 252 mV at a current density of 10 mA cm−2, and long operation stability of 4 day in the acid electrolyte. The improved HER activity of the Au-NiS@rGO hybrid composite catalyst is attributed to the synergistic effect of the surface plasmon resonance of Au NPs and enhanced electron transfer on RGO. This work could offer a facile and low-cost strategy for the construction of composite photocatalysts with high-efficiency hydrogen generation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Z. Heydariyan, R. Monsef, E.A. Dawi, M. Salavati-Niasari, EuMnO3/EuMn2O5/MWCNT nanocomposites: Insights into synthesis and application as potential materials for development of hydrogen storage capacity. Fuel 1(351), 128885 (2023)

    Google Scholar 

  2. A. Karami, R. Monsef, I. Waleed, H.L. Kareem, I.T. Ibrahim, M. Salavati-Niasari, Microwave synthesized erbium vanadate nano-photocatalyst: application for enhanced degradation of contaminated water. Int. J. Hydrogen Energy 48(23), 8499–8513 (2023)

    CAS  Google Scholar 

  3. M. Salavati-Niasari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J. Alloys Compds. 492(1–2), 570–575 (2010)

    CAS  Google Scholar 

  4. A.M. Abdalla, S. Hossain, O.B. Nis, A.T. Azad, Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers. Manag. 165, 602–627 (2018)

    CAS  Google Scholar 

  5. N. Rakesh, S. Dasappa, Analysis of tar obtained from hydrogen-rich syngas generated from a fixed bed downdraft biomass gasification system. Energy Convers. Manage. 167, 134–146 (2018)

    CAS  Google Scholar 

  6. Q. Wang, Y. Zhao, Z. Zhang, S. Liao, Y. Deng, X. Wang, Q. Ye, K. Wang, Hydrothermal preparation of Sn3O4/TiO2 nanotube arrays as effective photocatalysts for boosting photocatalytic dye degradation and hydrogen production. Ceram. Int. 49, 5977–5985 (2023)

    CAS  Google Scholar 

  7. Y.-C. Chang, S.-Y. Syu, Wu. Zi-Ying, Fabrication of ZnO-In2S3 composite nanofiber as highly efficient hydrogen evolution photocatalyst. Mater. Lett. 302, 130435 (2021)

    CAS  Google Scholar 

  8. Z. Ashfaq, T. Iqbal, H. Ali, S.M. Eldin, F.F. Al-Harbi, M. Arshad, A.M. Galal, Review of different CdS/TiO2 and WO3/g-C3N4 composite based photocatalyst for hydrogen production. Arab. J. Chem. 30, 105024 (2023)

    Google Scholar 

  9. S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)

    Google Scholar 

  10. K. Fujishima, Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  Google Scholar 

  11. W.L. Silva, A.L. Marla, Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais. Quím 36, 382–386 (2013)

    Google Scholar 

  12. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Do** of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B Environ. 217, 388–406 (2017)

    CAS  Google Scholar 

  13. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24, 229–251 (2012)

    CAS  Google Scholar 

  14. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 21, 2233–2239 (2009)

    CAS  Google Scholar 

  15. S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012)

    CAS  Google Scholar 

  16. J. Zhou, F. Ren, S. Zhang, W. Wu, X. **ao, Y. Liu, C. Jiang, SiO2–Ag–SiO2–TiO2 multi-shell structures: plasmon enhanced photocatalysts with wide-spectralresponse. J. Mater. Chem. 1, 13128–13138 (2013)

    CAS  Google Scholar 

  17. L. Wang, L. Zan, Band-gap-energy-adjustable and noble-metal-free modified NiS-ZnxCd1-xS for highly efficient visible-light-driven Cr6+ photoreduction in alkaline wastewater. J. Phys. Chem. Solids 150, 109893 (2021)

    CAS  Google Scholar 

  18. D.M. Muir, E. Ho, Process review and electrochemistry of nickel sulphides and nickel mattes in acidic sulphate and chloride media. Miner. Process. Extr. Metall. 115, 57–65 (2013)

    Google Scholar 

  19. K. He, L.J. Guo, Highly efficient and stable photocatalysts for hydrogen production from water. Int. J. Hydrogen Energy 42, 23995 (2017)

    CAS  Google Scholar 

  20. K.T. Alali, Z. Lu, H. Zhang, J. Liu, Q. Liu, R. Li, K. Aljebawi, J. Wang, P–p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg. Chem. Front. 4(7), 1219–30 (2017)

    CAS  Google Scholar 

  21. M. Zhou, D. Han, X. Liu, C. Ma, H. Wang, Y. Tang et al., Enhanced visible light photocatalytic activity of alkaline earth metal ions-doped CdSe/rGO photocatalysts synthesized by hydrothermal method. Appl Catal B 172, 174–184 (2015)

    Google Scholar 

  22. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)

    CAS  Google Scholar 

  23. C. Xu, X. Wang, J.W. Zhu, Graphene—metal particle nanocomposites. J. Phys. Chem. C 112, 19841 (2008)

    CAS  Google Scholar 

  24. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 45, 1558–1565 (2007)

    CAS  Google Scholar 

  25. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010)

    CAS  Google Scholar 

  26. J. Hong, Y. Wang, Y. Wang, W. Zhang, R. Xu, Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. Chemsuschem 6, 2263–2268 (2013)

    CAS  Google Scholar 

  27. Z. Chen, P. Sun, B. Fan, Z. Zhang, X. Fang, In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity. J. Phys. Chem. C 118, 7801–7807 (2014)

    CAS  Google Scholar 

  28. Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl. Catal. B 163, 135–142 (2015)

    CAS  Google Scholar 

  29. S. Kai, B. **, X. Liu, Ju. Lin, P. Wang, Z. Feng, X. Ma, S. **ong, An innovative Au-CdS/ZnS-RGO architecture for efficiently photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 895–2899 (2018)

    Google Scholar 

  30. M. Jayashree, V. Sharmila, K.L. Meganathan, R. Boopathi Raja, M. Parthibavarman, M. Shkir, S. AlFaify, Design and fabrication of graphene anchored CeO2 hybrid nanocomposite electrodes for high performance energy storage device applications. Inorg. Chem. Commun. 132, 108838 (2021)

    CAS  Google Scholar 

  31. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloy Compd. 811, 152084 (2019)

    CAS  Google Scholar 

  32. R. Boopathi Raja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    CAS  Google Scholar 

  33. M.P. Seah, I.S. Gilmore, G. Beamson, XPS: binding energy calibration of electron spectrometers 5-re-evaluation of the reference energies. Surf. Interface Anal. 26, 642–649 (1998)

    CAS  Google Scholar 

  34. S. Yan, Y. Shi, L. Sun, Z. **ao, B. Sun, X. Xu, Controlled synthesis of NiS nanoparticle/CdS nanowire heterostructures via solution route and their optical properties. Mater. Sci. Eng. B 178, 109–116 (2013)

    CAS  Google Scholar 

  35. Y. You, Y. Ye, M. Wei, W. Sun, Q. Tang, J. Zhang, X. Chen, H. Li, J. Xu, Three dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 355, 671–678 (2019)

    CAS  Google Scholar 

  36. D. Merki, S. Fierro, H. Vrubel, X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262–1267 (2011)

    CAS  Google Scholar 

  37. T. Hu, K. Bian, G.A. Tai, T. Zeng, X. Wang, X. Huang, K. **ong, K. Zhu, Oxidation-sulfidation approach for vertically growing MoS2 nanofilms catalysts on molybdenum foils as efficient HER catalysts. J. Phys. Chem. C 120, 25843–25850 (2016)

    CAS  Google Scholar 

  38. M. Basu, R. Nazir, P. Fageria, S. Pande, Construction of CuS/Au heterostructure through a simple photoreduction route for enhanced electrochemical hydrogen evolution and photocatalysis. Sci. Rep. 6, 34738 (2016)

    CAS  Google Scholar 

  39. B. He, L. Chen, M. **g, M. Zhou, Z. Hou, X. Chen, 3D MoS2-rGO@Mo nanohybrids for enhanced hydrogen evolution: The importance of the synergy on the Volmer reaction. Electrochim. Acta 283, 357–365 (2018)

    CAS  Google Scholar 

  40. X. Zhao, X. Wang, L. Chen, X. Kong, Z. Li, Y. Zhao, T. Wang et al., The design and synthesis of Fe doped flower-like NiS/NiS2 catalyst with enhanced oxygen evolution reaction. J. Electroanal. Chem. 920, 116630 (2022)

    CAS  Google Scholar 

  41. Y. Huanga, Y. Pan, X. Huang, J. Zhao, X. Wang, Porous NiS@Ni2P nanoframe as a multi-functional catalyst for enhanced oxygen evolution and urea oxidation reactions. J. Ind. Eng. Chem. 118, 239–246 (2023)

    Google Scholar 

  42. Q. Wang, Du. **aoqiang, X. Zhang, Construction of CoS/NiS@CuS with dandelion flower-like heterostructures as efficient catalysts for overall urea splitting. Int. J. Hydrogen Energy 48, 24342–24355 (2023)

    CAS  Google Scholar 

  43. X. Fan, B. Wang, Q. Heng, W. Chen, L. Mao, Facile in-situ synthesis of α-NiS/CdS p-n junction with enhanced photocatalytic H2 production activity. Int. J. Hydrogen Energy 47, 32531–32542 (2022)

    CAS  Google Scholar 

  44. H. Chang, W. Fan, J. Liu, Z. Jiang, Y. Li, Y. Zhang, J. Zhang, Polyoxo-titanium clusters promoted photocatalytic H2 evolution activity in a NiS modified CdS/MIL-101 system. Int. J. Hydrogen Energy 46, 6369–6379 (2021)

    CAS  Google Scholar 

  45. Ke. Zhang, E. Yang, Y. Zheng, Yu. Dehua, J. Chen, Y. Lou, obust and hydrophilic Mo-NiS@NiTe core-shell heterostructure nanorod arrays for efficient hydrogen evolution reaction in alkaline freshwater and seawater. Appl. Surf. Sci. 637, 157977 (2023)

    CAS  Google Scholar 

  46. H.Ö. Doğan, B.K. Urhan, NiS@CuBi2O4/ERGO heterostructured electro-catalyst for enhanced hydrogen evolution reaction. Micro Nanostruct. 183, 207666 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PS and AS contributed toward study conceptualization and writing (original draft) the manuscript. KP and SPS, contributed toward data curation, formal analysis, and writing (review and editing).

Corresponding author

Correspondence to A. Sankar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 349 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil, P., Sankar, A., Paramasivaganesh, K. et al. Au NPs-incorporated NiS/RGO hybrid composites for efficient visible light photocatalytic hydrogen evolution. J Mater Sci: Mater Electron 35, 3 (2024). https://doi.org/10.1007/s10854-023-11684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11684-0

Navigation