Log in

Production of PbS/Si structures by the hydrochemical deposition: composition, structure and properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multilayer structures based on semiconductor materials are being actively studied for their use in various solar energy detectors and converters. Due to the combination of properties of individual materials, an overall improvement of performance characteristics can be achieved in their multilayer design. In the present work, a technique for the preparation of layered structures based on PbS on the surface of silicon substrates has been tested for the first time. The principal possibility of chemical deposition of lead sulfide films from aqueous media at 80 °C by varying the initial state of the silicon substrate and the presence of the sensitive NH4Cl addition is presented. The morphology, elemental and phase composition, structural, and optical characteristics of the obtained lead sulfide films were studied by ICP, SEM-EDX, XRD and Raman spectroscopy. The photoelectrochemical effect of initial silicon substrates and layered PbS/Si structures was obtained using a solar simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. D.G. Zakirov, Y.A. Slautin, Renewable and secondary power sources relevance for small-scale power generation in the Perm territory. Rus. Coal J. 4, 60–63 (2017). https://doi.org/10.18796/0041-5790-2017-2-60-63

    Article  Google Scholar 

  2. Y. Al-Douri, M.M. Khan, J.R. Jennings, Synthesis and optical properties of II–VI semiconductor quantum dots: a review. J. Mater. Sci: Mater. Electron. 34, 993 (2023). https://doi.org/10.1007/s10854-023-10435-5

    Article  CAS  Google Scholar 

  3. K.H. Aboud, S.M.H. AL-Jawad, N.J. Imran, Synthesis and characterization of flakes-like and flowers-like Ni: CdS nano films via hydrothermal technique for photocatalytic activity. J. Mater. Sci: Mater. Electron. 34, 933 (2023). https://doi.org/10.1007/s10854-023-10330-z

    Article  CAS  Google Scholar 

  4. K. Kanchan, A. Sahu, B. Kumar, Numerical simulation of copper indium gallium diselenide solar cell with ultra-thin BaSi2 back surface field layer using the non-toxic In2Se3 buffer layer. Silicon. 14, 12675–12682 (2022). https://doi.org/10.1007/s12633-022-01983-2

    Article  CAS  Google Scholar 

  5. R. Abdurakhimova, M. Laptev, N. Leonova, A. Leonova et al., Electroreduction of silicon from the NaI-KI-K2SiF6 melt for lithium-ion power sources. Chim. Techno Acta. 9, 20229424 (2022). https://doi.org/10.15826/chimtech.2022.9.4.24

    Article  CAS  Google Scholar 

  6. M.K. Sahoo, P. Kale, Restructured porous silicon for solar photovoltaic: a review. Microporous Mesoporous Mater. 289, 109619 (2019). https://doi.org/10.1016/j.micromeso.2019.109619

    Article  CAS  Google Scholar 

  7. A. Suzdaltsev, Silicon electrodeposition for microelectronics and distributed energy: a mini-review. Electrochem. 3, 760–768 (2022). https://doi.org/10.3390/electrochem3040050

    Article  CAS  Google Scholar 

  8. X. Wang, X. Tian, X. Chen, L. Ren et al., A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology. Sol. Energy Mater. Sol. Cells. 248, 111976 (2022). https://doi.org/10.1016/j.solmat.2022.111976

    Article  CAS  Google Scholar 

  9. L. Wang, Y. Zhang, M. Kim, M. Wright et al., Sustainability evaluations on material consumption for terawatt-scale manufacturing of silicon-based tandem solar cells. Prog Photovolt. Res. Appl. (2023). https://doi.org/10.1002/pip.3687

    Article  Google Scholar 

  10. J.-S. Cho, Y.H. Seo, A. Lee, S. Park et al., Energy-harvesting photovoltaic transparent tandem devices using hydrogenated amorphous and microcrystalline silicon absorber layers for window applications. Appl. Surf. Sci. 589, 152936 (2022). https://doi.org/10.1016/j.apsusc.2022.152936

    Article  CAS  Google Scholar 

  11. J. Ajayan, D. Nirmal, P. Mohankumar, B. Mounika et al., Challenges in material processing and reliability issues in AlGaN/GaN HEMTs on silicon wafers for future RF power electronics & switching applications: A critical review. Mat. Sci. Semicond. Proc. 151, 106982 (2022). https://doi.org/10.1016/j.mssp.2022.106982

    Article  CAS  Google Scholar 

  12. S. Aldawood, S.S. AlGamdi, S.A.A. Salman et al., Influence of γ-ray exposure and dose dependent characteristics of (n)PbS–(p)Si hetero-structure. J. Mater. Sci: Mater. Electron. 32, 11616–11627 (2021). https://doi.org/10.1007/s10854-021-05771-3

    Article  CAS  Google Scholar 

  13. M.H. Patel, T.K. Chaudhuri, V.K. Patel, Solid state in situ thermolysis approach for synthesis of PbS/PEO/PVP nanocomposite films. J. Mater. Sci: Mater. Electron. 34, 667 (2023). https://doi.org/10.1007/s10854-023-10007-7

    Article  CAS  Google Scholar 

  14. H. Lv, H. Wu, X. Wu, J. Zheng et al., Fabricating WS2/Mn0.5Cd0.5S/CuInS2 hierarchical tandem p-n heterojunction for highly efficient hydrogen production. Appl. Surf. Sci. 593, 153448 (2022). https://doi.org/10.1016/j.apsusc.2022.153448

    Article  CAS  Google Scholar 

  15. B.Y. Castillo-Sánchez, L.A. González, Chemically deposited PbS thin films by reaction media with glycine for use in photovoltaics. Mat. Sci. Semicond. Proc. 121, 105405 (2021). https://doi.org/10.1016/j.mssp.2020.105405

    Article  CAS  Google Scholar 

  16. J.H. Park, S.G. Ji, I.J. Park, S.K. Hwang et al., Sub-cell characterization of two-terminal perovskite/silicon tandem solar cells. Cell. Rep. Phys. Sci. 3, 101076 (2022). https://doi.org/10.1016/j.xcrp.2022.101076

    Article  CAS  Google Scholar 

  17. M. Zamin, N.O. Balayeva, PbS nanostructures: a review of recent advances. Mat. Today Sust. 21, 100305 (2023). https://doi.org/10.1016/j.mtsust.2022.100305

    Article  Google Scholar 

  18. D. Kumar, R. Bai, S. Chaudhary, D.K. Pandya, Enhanced photoelectrochemical response for hydrogen generation in self-assembled aligned ZnO/PbS core/shell nanorod arrays grown by chemical bath deposition. Mat. Today Energy. 6, 105–114 (2017). https://doi.org/10.1016/j.mtener.2017.09.004

    Article  CAS  Google Scholar 

  19. M. Kord, K. Hedayati, M. Farhadi, Green synthesis and characterization of flower-like PbS and metal-doped nanostructures via hydrothermal method. Main Group. Metal Chem. 40, 35–40 (2017). https://doi.org/10.1515/mgmc-2016-0046

    Article  CAS  Google Scholar 

  20. L.N. Maskaeva, I.V. Vaganova, V.F. Markov et al., Formation of CdxPb1–xS/Cd1–δS thin-film two-phase compositions by chemical bath deposition: composition, structure, and optical properties. J. Mater. Sci: Mater. Electron. 32, 19230–19247 (2021). https://doi.org/10.1007/s10854-021-06444-x

    Article  CAS  Google Scholar 

  21. D.D. Uhuegbu, Growth and characterization of lead sulphide thin film for solar cell fabrication. J. Sci. & Ind. Res. 2, 230–241 (2011)

    Google Scholar 

  22. B.P. Singh, R. Kumar, A. Kumar, R.C. Tyagi, Vacuum deposition of stoichiometric crystalline PbS films: the effect of sulfurizing environment during deposition. Mater. Res. Express. 2, 106401 (2015). https://doi.org/10.1088/2053-1591/2/10/106401

    Article  CAS  Google Scholar 

  23. Y. **ao, T. Xu, M. Zhang et al., Study of the quasi-single crystalline lead sulfide film deposited by magnetron sputtering and its infrared detecting characteristics. J. Mater. Sci: Mater. Electron. 33, 16029–16044 (2022). https://doi.org/10.1007/s10854-022-08494-1

    Article  CAS  Google Scholar 

  24. F.K. Algethami, K. Trabelsi, A. Hajjaji, M.B. Rabha et al., Photocatalytic activity of silicon nanowires decorated with PbS nanoparticles deposited by pulsed laser deposition for efficient wastewater treatment. Materials. 15, 4970 (2022). https://doi.org/10.3390/ma15144970

    Article  CAS  Google Scholar 

  25. W. Han, L.-Y. Cao, J.-F. Huang, Influence of pH value on PbS thin films prepared by electrodeposition. Mater. Technol. 24, 217 (2009). https://doi.org/10.1179/175355509X447195

    Article  CAS  Google Scholar 

  26. P. Vidhya, K. Shanmugasundaram, P. Thirunavukkarasu et al., Enhancement of optoelectronic properties of PbS thin films grown by Jet nebulizer spray pyrolysis technique for photodetector applications: an impact of substrate temperature. J. Mater. Sci: Mater. Electron. 34, 1023 (2023). https://doi.org/10.1007/s10854-023-10406-w

    Article  CAS  Google Scholar 

  27. M. Mohanraj, S. Aejitha, T. Govindaraj et al., Enhancement of physical properties of nebulizer spray-pyrolyzed PbS thin films for optoelectronic device application: an effect of Ag do**. J. Mater. Sci: Mater. Electron. 34, 643 (2023). https://doi.org/10.1007/s10854-023-09997-1

    Article  CAS  Google Scholar 

  28. Ã.Ã. Üst, K. Dağcı, M. Alanyalıoğlu, Electrochemical approaches for rearrangement of lead sulfide thin films prepared by SILAR method. Mat. Sci. Semicond. Proc. 41, 270–276 (2016). https://doi.org/10.1016/j.mssp.2015.09.019

    Article  CAS  Google Scholar 

  29. Z.K. Heiba, M.B. Mohamed, A.M. El-naggar et al., Structural and the optical characteristics of PbSx thin films. J. Mater. Sci: Mater. Electron. 33, 23270–23281 (2022). https://doi.org/10.1007/s10854-022-09093-w

    Article  CAS  Google Scholar 

  30. L.N. Maskaeva, E.E. Lekomtseva, P.S. Bogatova, V.F. Markov et al., Structure, optical, and photoelectric properties of lead-sulfide films doped with strontium and barium. Semiconductors. 54, 1230–1240 (2020). https://doi.org/10.1134/S1063782620100231

    Article  CAS  Google Scholar 

  31. R.K. Saryeva, N.S. Kozhevnikova, L.N. Maskaeva, V.F. Markov et al., Nanostructured Pb(S, O) films: synthesis, mechanism of deposition, and optical properties. Rus J. Phys. Chem. A 94, 2421–2427 (2020). https://doi.org/10.1134/S0036024420120262

    Article  CAS  Google Scholar 

  32. S.R. Tippasani, S.V. Krishna, M.C.S. Kumar, Deposition time-dependent properties of PbS thin films. In: Rao, N.M., Lingamallu, G., Agarwal, M. (eds) Advanced nanomaterials and their applications. ICANA 2022. Springer Proceedings in Materials, vol 22. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-1616-0_6

  33. E.V. Maraeva, A.A. Shupta, A.A. Bobkov, V.S. Levitskii et al., The photoluminescence and phase composition of lead sulphide–cadmium sulphide layers obtained by chemical bath deposition. J Phys. Conf Ser. 735(1), 012056 (2016). https://doi.org/10.1088/1742-6596/735/1/012056

    Article  CAS  Google Scholar 

  34. M. Islam, H. Said, A. Hamzaoui, A. Mnif, Study of structural and optical properties of electrodeposited silicon films on graphite substrates. Nanomaterials. 12, 363 (2022). https://doi.org/10.3390/nano12030363

    Article  CAS  Google Scholar 

  35. M. Laptev, A. Isakov, O. Grishenkova, A. Vorob’ev et al., Electrodeposition of thin silicon films from the KF–KCl–KI–K2SiF6 melt. J. Electrochem. Soc. 167, 042506 (2020). https://doi.org/10.1149/1945-7111/ab7aec

    Article  CAS  Google Scholar 

  36. O.B. Pavlenko, Y.A. Ustinova, S.I. Zhuk, A.V. Suzdaltsev et al.,  Silicon electrodeposition from low-melting LiCl-KCl-CsCl melts. Rus. Met. (Metally) 2022, 818–824 (2022). https://doi.org/10.1134/S0036029522080109

    Article  Google Scholar 

  37. Y.A. Parasotchenko, O.B. Pavlenko, A.V. Suzdaltsev, Y.P. Zaikov, Electrochemical nucleation of silicon in the low-temperature LiCl-KCl-CsCl-K2SiF6 melt. J. Electrochem. Soc. 170, 022505 (2023). https://doi.org/10.1149/1945-7111/acbabf

    Article  CAS  Google Scholar 

Download references

Funding

The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed, discussed the results and approved the final manuscript.

Corresponding author

Correspondence to A. V. Suzdaltsev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdurakhimova, R.K., Tulenin, S.S., Leonova, N.M. et al. Production of PbS/Si structures by the hydrochemical deposition: composition, structure and properties. J Mater Sci: Mater Electron 34, 2113 (2023). https://doi.org/10.1007/s10854-023-11552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11552-x

Navigation