Log in

Significantly improved magnetic parameters of Co–La co-doped strontium hexagonal ferrites for recording applications: structural, hysteresis, and mössbauer performance metrics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

M-type hexaferrite substituted with cobalt and lanthanum [\({\text{SrCo}}_{1.5z} {\text{La}}_{0.5z} {\text{Fe}}_{12 - 2z} {\text{O}}_{19}\) (SCLF; 0.0 \(\le z \le 0.5)\)] was synthesized by auto-combustion Sol–gel methodology. XRD study indicated that prepared specimens exhibit a hexagonal magnetoplumbite phase without any secondary peak. The crystallite size decreases from 48.94 to 28.82 nm as the level of substitution increases in SrM hexaferrite. The micrographs showed an enhancement in the inter-grain connectivity of grains with substitution. Mössbauer spectra revealed the variation observed in hyperfine interactions, isomer shift, quadrupole splitting, and relative area of five sextets of Fe3+ ions. Analysis of Mössbauer depicted that the substituents tend to occupy spin-up 12k-2a sites of crystal lattice from z = 0.0 to z = 0.3, which elucidated the diminution observed in magnetization. The coercivity gradually decreased from z = 0.0 (5026.54 Oe) to z = 0.5 (862.47 Oe). The saturation magnetization initially decreased with substitution from z = 0.0 to 0.3 and then increased for z = 0.4 and 0.5 samples. The magnetic susceptibility (dM/dH) of samples derived from magnetic parameters is high for z = 0.0, 0.2, 0.3, and 0.4. Both Ms with tunable Hc and magnetic susceptibility results make them considerable materials for recording applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Bayrakdar, Fabrication, magnetic and microwave absorbing properties of Ba2Co2Cr2Fe12O22 hexagonal ferrites. J. Alloys Compd. 674, 185–188 (2016). https://doi.org/10.1016/j.jallcom.2016.03.055

    Article  CAS  Google Scholar 

  2. A. Sharbati, J. Mola-Verdi-Khani, G.R. Amiri, Microwave absorption studies of nanocrystalline SrMnx/2(TiSn)x/4 Fe12−xO19 prepared by the citrate sol-gel method. Solid State Commun. 152(3), 199–203 (2012). https://doi.org/10.1016/j.ssc.2011.11.009

    Article  CAS  Google Scholar 

  3. A.D. Deshpande, K.G. Rewatkar, V.M. Nanoti, Study of morphology and magnetic properties of nanosized particles of Zirconium—Cobalt substituted calcium hexaferrites. Mater. Today Proc. 4(11), 12174–12179 (2017). https://doi.org/10.1016/j.matpr.2017.09.147

    Article  Google Scholar 

  4. G. Feng et al., Co substituted BaFe12O19 ceramics with enhanced magnetic resonance behavior and microwave absorption properties in 2.6–18 GHz. Ceram. Int. 45(11), 13859–13864 (2019). https://doi.org/10.1016/j.ceramint.2019.04.083

    Article  CAS  Google Scholar 

  5. B. Zong, X. Niu, Analysis of structure and magnetic behavior in M-type hexaferrite compounds Sr1−xYxFe10CoTiO19. J. Mater. Sci. Mater. Electron. 31(7), 5290–5297 (2020). https://doi.org/10.1007/s10854-020-03089-0

    Article  CAS  Google Scholar 

  6. Y. Feng, S. Li, Y. Zheng, Z. Yi, Y. He, Y. Xu, Preparation and characterization of MgFe2O4 nanocrystallites via PVA sol–gel route. J. Alloys Compd. 699, 521–525 (2017). https://doi.org/10.1016/j.jallcom.2016.12.432

    Article  CAS  Google Scholar 

  7. S.K. Durrani, S. Naz, M. Mehmood, M. Nadeem, M. Siddique, Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process. J. Saudi Chem. Soc. 21(8), 899–910 (2017). https://doi.org/10.1016/j.jscs.2015.12.006

    Article  CAS  Google Scholar 

  8. S.V. Trukhanov et al., Magnetic and dipole moments in indium doped barium hexaferrites. J. Magn. Magn. Mater. 457, 83–96 (2018). https://doi.org/10.1016/j.jmmm.2018.02.078

    Article  CAS  Google Scholar 

  9. R.B. Jotania, R.B. Khomane, C.C. Chauhan, S.K. Menon, B.D. Kulkarni, Synthesis and magnetic properties of barium-calcium hexaferrite particles prepared by sol-gel and microemulsion techniques. J. Magn. Magn. Mater. 320(6), 1095–1101 (2008). https://doi.org/10.1016/j.jmmm.2007.10.032

    Article  CAS  Google Scholar 

  10. C. Singh, S. Bindra Narang, I.S. Hudiara, K.C. James Raju, K. Sudheendran, Microwave and electrical properties of Co–Zr substituted Ba–Sr ferrite. J. Ceram. Process. Res. 11(6), 692–697 (2010)

    Google Scholar 

  11. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, Microwave behavior of ferrites prepared via sol–gel method. J. Magn. Magn. Mater. 246(3), 360–365 (2002). https://doi.org/10.1016/S0304-8853(02)00106-3

    Article  CAS  Google Scholar 

  12. N. Tran, Y.J. Choi, T.L. Phan, D.S. Yang, B.W. Lee, Electronic structure and magnetic and electromagnetic wave absorption properties of BaFe12xCoxO19 M-type hexaferrites. Curr. Appl. Phys. 19(12), 1343–1348 (2019). https://doi.org/10.1016/j.cap.2019.08.023

    Article  Google Scholar 

  13. G. Sriramulu, N. Maramu, K. Praveena, S. Katlakunta, Effect of Cr3+–Al3+ cosubstitution on structural, magnetic and microwave absorption properties of Srhexaferrites. J Mater Sci Mater Electron. 33(35), 26113–26123 (2022). https://doi.org/10.1007/s10854-022-09298-z

    Article  CAS  Google Scholar 

  14. J. Du, L. Lian, Y. Liu, Y. Du, Effect of Zn substitution on the structure and magnetic properties of Sr0.1La0.45Ca0.45Fe11.7−xZnxCo0.3O19 hexagonal ferrites. J Mater Sci Mater Electron. 30(21), 19618–19624 (2019). https://doi.org/10.1007/s10854-019-02335-4

    Article  CAS  Google Scholar 

  15. X. Suo, J. Li, W. Zhang, P. Li, Effect of La3+ Substitution on the Structure and Magnetic Properties of M-type Sr Hexaferrites. J Supercond Nov Magn. 36(1) 197–206 (2023). https://doi.org/10.1007/s10948-022-06450-y

    Article  CAS  Google Scholar 

  16. R.A. Nandotaria et al., Magnetic interactions and dielectric dispersion in Mg substituted M-type Sr–Cu hexaferrite nanoparticles prepared using one step solvent free synthesis technique. Ceram. Int. 44(4), 4426–4435 (2018). https://doi.org/10.1016/j.ceramint.2017.12.043

    Article  CAS  Google Scholar 

  17. M.A. Almessiere, Y. Slimani, H. Güngüneş, A. Baykal, S.V. Trukhanov, A.V. Trukhanov, Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and mossbauer spectra. Nanomaterials (2019). https://doi.org/10.3390/nano9010024

    Article  Google Scholar 

  18. B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloys Compd. 550, 198–203 (2013). https://doi.org/10.1016/j.jallcom.2012.09.021

    Article  CAS  Google Scholar 

  19. C.C. Chauhan, T. Gupta, A.A. Gor, K.R. Jotania, R.B. Jotania, Effect of calcination temperature on structural and magnetic properties of lightly lanthanum substituted M-type strontium cobalt hexaferrites. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.12.1184

    Article  Google Scholar 

  20. M.M. Hessien, N. El-Bagoury, M.H.H. Mahmoud, M. Alsawat, A.K. Alanazi, M.M. Rashad, Implementation of La3+ ion substituted M-type strontium hexaferrite powders for enhancement of magnetic properties. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2019.166187

    Article  Google Scholar 

  21. C. Rambabu et al., Effect of La3+ and Ni2+ substitution on Sr1−xLaxFe12−yNiyO19 hexaferrite structural, magnetic, and dielectric properties. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. (2023). https://doi.org/10.1016/j.mseb.2022.116257

    Article  Google Scholar 

  22. C. Stergiou, Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites. J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2016.11.001

    Article  Google Scholar 

  23. M. Ayub, I.H. Gul, K. Nawaz, K. Yaqoob, Effect of rare earth and transition metal La-Mn substitution on electrical properties of co-precipitated M-type Ba-ferrites nanoparticles. J. Rare Earths 37(2), 193–197 (2019). https://doi.org/10.1016/j.jre.2018.08.005

    Article  CAS  Google Scholar 

  24. G. Feng et al., Lanthanum-substituted Ba0.4Ca0.6Fe11.4Co0.6O19 ceramics with enhanced microwave absorption. J. Mater. Sci. Mater. Electron. 31(1), 621–627 (2020). https://doi.org/10.1007/s10854-019-02567-4

    Article  CAS  Google Scholar 

  25. M. Augustin, T. Balu, Estimation of lattice stress and strain in zinc and manganese ferrite nanoparticles by williamson-hall and size-strain plot methods. Int. J. Nanosci. 16(3), 1–7 (2017). https://doi.org/10.1142/S0219581X16500356

    Article  CAS  Google Scholar 

  26. J. Mohammed et al., Structural, dielectric, and magneto-optical properties of Cu2+–Er3+ substituted nanocrystalline strontium hexaferrite. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab063b

    Article  Google Scholar 

  27. H. Mahajan, S.K. Godara, A.K. Srivastava, Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite. J. Alloys Compd. 896, 162966 (2021). https://doi.org/10.1016/j.jallcom.2021.162966

    Article  CAS  Google Scholar 

  28. H. Moradmard, S. Farjami Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloys Compd. 650, 116–122 (2015). https://doi.org/10.1016/j.jallcom.2015.07.269

    Article  CAS  Google Scholar 

  29. H. Kaur et al., Elucidation of microwave absorption mechanisms in Co–Ga substituted Ba–Sr hexaferrites in X-band. J. Mater. Sci. Mater. Electron. 29(17), 14995–15005 (2018). https://doi.org/10.1007/s10854-018-9638-3

    Article  CAS  Google Scholar 

  30. S. Bindra Narang, K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.167163

    Article  Google Scholar 

  31. S.K. Chawla, S.S. Meena, P. Kaur, R.K. Mudsainiyan, S.M. Yusuf, Effect of site preferences on structural and magnetic switching properties of CO–Zr doped strontium hexaferrite SrCoxZrxFe(12–2x)O19. J. Magn. Magn. Mater. 378, 84–91 (2015). https://doi.org/10.1016/j.jmmm.2014.10.168

    Article  CAS  Google Scholar 

  32. T.T. Carol, J. Mohammed, B.H. Bhat, S. Mishra, S.K. Godara, A.K. Srivastava, Effect of Cr–Bi substitution on the structural, optical, electrical and magnetic properties of strontium hexaferrites. Physica B 575, 411681 (2019). https://doi.org/10.1016/j.physb.2019.411681

    Article  CAS  Google Scholar 

  33. T. Kaur, S. Kumar, B.H. Bhat, B. Want, A.K. Srivastava, Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A Mater. Sci. Process. 119(4), 1531–1540 (2015). https://doi.org/10.1007/s00339-015-9134-z

    Article  CAS  Google Scholar 

  34. T.M. Meaz, C.B. Koch, An investigation of trivalent substituted M-type hexagonal ferrite using X-ray and Mössbauer spectroscopy. Hyperfine Interact. 166(1–4), 455–463 (2005). https://doi.org/10.1007/s10751-006-9308-3

    Article  CAS  Google Scholar 

  35. G.A. Ashraf, L. Zhang, W. Abbas, G. Murtaza, Synthesis and characterizations of Al-Sm substituted Ba-Sr M-type hexagonal ferrite nanoparticles via sol–gel route. Ceram. Int. 44(15), 18678–18685 (2018). https://doi.org/10.1016/j.ceramint.2018.07.096

    Article  CAS  Google Scholar 

  36. J. Xu, H. Zou, H. Li, G. Li, S. Gan, G. Hong, Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite. J. Alloys Compd. 490(1–2), 552–556 (2010). https://doi.org/10.1016/j.jallcom.2009.10.079

    Article  CAS  Google Scholar 

  37. J.H. De Araújo, J.M. Soares, M.F. Ginani, F.L.A. Machado, J.B.M. Cunha, Mössbauer and magnetic study of nanocrystalline strontium hexaferrite prepared by an ionic coordination reaction technique. J. Magn. Magn. Mater. 343(3), 203–207 (2013). https://doi.org/10.1016/j.jmmm.2013.04.077

    Article  CAS  Google Scholar 

  38. I.A. Auwal et al., Mössbauer analysis and cation distribution of Zn substituted BaFe12O19 Hexaferrites. J. Supercond. Nov. Magn. 31(1), 151–156 (2018). https://doi.org/10.1007/s10948-017-4170-x

    Article  CAS  Google Scholar 

  39. G.D. Soria, P. Jenus, J.F. Marco, A. Mandziak, F. Moutinho, Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-48010-w

    Article  Google Scholar 

  40. M. Awawdeh, I. Bsoul, S.H. Mahmood, Magnetic properties and Mossbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites. J. Alloys Compd. 585, 465–473 (2014). https://doi.org/10.1016/j.jallcom.2013.09.174

    Article  CAS  Google Scholar 

  41. S.C. Bhandari, D. Guragain, J. Mohapatra, S. Yoon, J.P. Liu, S.R. Mishra, Magnetic and Mössbauer effect study of Ca–Sc Co-doped M-type strontium hexaferrite. J. Supercond. Nov. Magn. (2021). https://doi.org/10.1007/s10948-021-05882-2

    Article  Google Scholar 

  42. C. Liu et al., Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution. J. Magn. Magn. Mater. 436, 126–129 (2017). https://doi.org/10.1016/j.jmmm.2017.04.040

    Article  CAS  Google Scholar 

  43. H.S. Mund, B.L. Ahuja, Structural and magnetic properties of Mg doped cobalt ferrite nano particles prepared by sol-gel method. Mater. Res. Bull. 85, 228–233 (2017). https://doi.org/10.1016/j.materresbull.2016.09.027

    Article  CAS  Google Scholar 

  44. C.C. Chauhan, T. Gupta, A.A. Gor, K.R. Jotania, R.B. Jotania, Effect of calcination temperature on structural and magnetic properties of lightly lanthanum substituted M-type strontium cobalt hexaferrites. Mater. Today Proc. 47, 715–718 (2020). https://doi.org/10.1016/j.matpr.2020.12.1184

    Article  CAS  Google Scholar 

  45. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of in doped cobalt ferrite nanoparticles. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4759436

    Article  Google Scholar 

  46. M.V. Rane, D. Bahadur, A.K. Nigam, C.M. Srivastava, Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magn. Magn. Mater. 192(2), 288–296 (1999). https://doi.org/10.1016/S0304-8853(98)00533-2

    Article  CAS  Google Scholar 

  47. C. Singh, S.B. Narang, I.S. Hudiara, Y. Bai, K. Marina, Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Mater. Lett. 63(22), 1921–1924 (2009). https://doi.org/10.1016/j.matlet.2009.06.002

    Article  CAS  Google Scholar 

  48. S. Kumar, M. Kumar Manglam, S. Supriya, H. Kumar Satyapal, R. Kumar Singh, M. Kar, Lattice strain mediated dielectric and magnetic properties in La doped barium hexaferrite. J. Magn. Magn. Mater. 473, 312–319 (2019). https://doi.org/10.1016/j.jmmm.2018.10.085

    Article  CAS  Google Scholar 

  49. R. Grössinger, Correlation between the inhomogeneity and the magnetic anisotropy in polycrystalline ferromagnetic materials. J. Magn. Magn. Mater. 28(1–2), 137–142 (1982). https://doi.org/10.1016/0304-8853(82)90037-3

    Article  Google Scholar 

  50. T. Ben Ghzaiel, W. Dhaoui, A. Pasko, F. Mazaleyrat, Effect of non-magnetic and magnetic trivalent ion substitutions on BaM-ferrite properties synthesized by hydrothermal method. J. Alloys Compd. 671, 245–253 (2016). https://doi.org/10.1016/j.jallcom.2016.02.071

    Article  CAS  Google Scholar 

  51. A. Ghasemi, A. Morisako, Static and high frequency magnetic properties of Mn–Co–Zr substituted Ba-ferrite. J. Alloys Compd. 456(1–2), 485–491 (2008). https://doi.org/10.1016/j.jallcom.2007.02.101

    Article  CAS  Google Scholar 

  52. A. Kara, Effect of rare-earth co-do** on the microstructural and magnetic properties of BaFe12O19. Adv. Mater. Sci. (2020). https://doi.org/10.2478/adms-2020-0014

    Article  Google Scholar 

  53. N. Sivakumar, A. Narayanasamy, K. Shinoda, C.N. Chinnasamy, B. Jeyadevan, J.M. Greneche, Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J. Appl. Phys. 102(1), 8 (2007). https://doi.org/10.1063/1.2752098

    Article  CAS  Google Scholar 

  54. D. Shekhawat, P.K. Roy, Impact of yttrium on the physical, electro-magnetic and dielectric properties of auto-combustion synthesized nanocrystalline strontium hexaferrite. J. Mater. Sci. Mater. Electron. 30(2), 1187–1198 (2019). https://doi.org/10.1007/s10854-018-0387-0

    Article  CAS  Google Scholar 

  55. J. Yang, W. Yang, F. Li, Y. Yang, Research and development of high-performance new microwave absorbers based on rare earth transition metal compounds: a review. J. Magn. Magn. Mater. 497, 165961 (2020). https://doi.org/10.1016/j.jmmm.2019.165961

    Article  CAS  Google Scholar 

  56. C. Liu et al., Influence of the Eu substitution on the structure and magnetic properties of the Sr-hexaferrites. Ceram. Int. 46(1), 171–179 (2020). https://doi.org/10.1016/j.ceramint.2019.08.245

    Article  CAS  Google Scholar 

  57. R. Srivastava, B.C. Yadav, Ferrite materials: Introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. Biomed. 4(2), 141–154 (2012). https://doi.org/10.1080/19430892.2012.676918

    Article  CAS  Google Scholar 

  58. R. Shams Alam, M. Moradi, H. Nikmanesh, J. Ventura, M. Rostami, Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12–4xO19 hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016). https://doi.org/10.1016/j.jmmm.2015.11.038

    Article  CAS  Google Scholar 

  59. J. Singh et al., Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+[sbnd]Al3+doped M-type Ba[sbnd]Sr hexaferrites synthesized by a ceramic method. J. Alloys Compd. 695, 1112–1121 (2017). https://doi.org/10.1016/j.jallcom.2016.10.237

    Article  CAS  Google Scholar 

  60. A. Baykal, S. Yokuş, S. Güner, H. Güngüneş, H. Sözeri, M. Amir, Magneto-optical properties and Mössbauer Investigation of BaxSryPbzFe12O19 Hexaferrites. Ceram. Int. 43(4), 3475–3482 (2017). https://doi.org/10.1016/j.ceramint.2016.10.013

    Article  CAS  Google Scholar 

  61. V. Dixit, D. Thapa, B. Lamichhane, C.N. Nandadasa, Y.K. Hong, S.G. Kim, Site preference and magnetic properties of Zn–Sn-substituted strontium hexaferrite. J. Appl. Phys. 125(17), 6–13 (2019). https://doi.org/10.1063/1.5084762

    Article  CAS  Google Scholar 

  62. A. Awadallah, S.H. Mahmood, Y. Maswadeh, I. Bsoul, A. Aloqaily, Structural and magnetic properties of vanadium doped M-type barium hexaferrite (BaFe12−xVxO19). IOP Conf. Ser. Mater. Sci. Eng. (2015). https://doi.org/10.1088/1757-899X/92/1/012006

    Article  Google Scholar 

  63. V. Pop et al., Structural and magnetic behaviour of SmCo5/α-Fe nanocomposites obtained by mechanical milling and subsequent annealing. Rom. Rep. Phys. 55(1–2), 127–136 (2010)

    CAS  Google Scholar 

  64. I. Panneer Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ do** in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322(7), 767–776 (2010). https://doi.org/10.1016/j.jmmm.2009.10.057

    Article  CAS  Google Scholar 

  65. J.N. Dahal, D. Neupane, T.P. Poudel, Synthesis and magnetic properties of 4:1 hard-soft SrFe12O19-La1–xSrxMnO3 nanocomposite prepared by auto-combustion method. AIP Adv. 9(7), 7 (2019). https://doi.org/10.1063/1.5096530

    Article  CAS  Google Scholar 

  66. D.N. Dipesh, L. Wang, H. Adhikari, J. Alam, S.R. Mishra, Influence of Al3+do** on structural and magnetic properties of CoFe2–xAlxO4 Ferrite nanoparticles. J. Alloys Compd. 688, 413–421 (2016). https://doi.org/10.1016/j.jallcom.2016.07.030

    Article  CAS  Google Scholar 

  67. W. Zhang, A. Sun, X. Zhao, N. Suo, L. Yu, Z. Zuo, Structural and magnetic properties of La3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto-combustion method. J. Sol Gel Sci. Technol. 90(3), 599–610 (2019). https://doi.org/10.1007/s10971-019-04941-4

    Article  CAS  Google Scholar 

  68. A. Thakur, R. R. Singh, P. B. Barman, Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater. 326, 35–40 (2013). https://doi.org/10.1016/j.jmmm.2012.08.038

    Article  CAS  Google Scholar 

  69. S. W. Lee, S. Y. An, I. B. Shim, C. S. Kim, Mössbauer studies of La-Zn substitution effect in strontium ferrite nanoparticles. J. Magn. Magn. Mater. 290, 231–233 (2005). https://doi.org/10.1016/j.jmmm.2004.11.190

    Article  CAS  Google Scholar 

  70. J. Lee, E.J. Lee, T.Y. Hwang, J. Kim, Y.H. Choa, Anisotropic characteristics and improved magnetic performance of Ca–La–Co-substituted strontium hexaferrite nanomagnets. Sci. Rep. 10(1), 1–9 (2020). https://doi.org/10.1038/s41598-020-72608-0

    Article  CAS  Google Scholar 

  71. B. H. Bhat B. Want, Magnetic, dielectric and complex impedance properties of lanthanum and magnesium substituted strontium hexaferrite. J Mater Sci Mater Electron. 27(12), 12582–12590 (2016). https://doi.org/10.1007/s10854-016-5389-1

    Article  CAS  Google Scholar 

Download references

Funding

There are not any financial and personal relationships with other people or organisations that could be viewed as inappropriately influencing (bias) their work. Funding source(s) had no such involvement in the collection, analysis and interpretation of data; in the writing of the report.

Author information

Authors and Affiliations

Authors

Contributions

MT: Investigation, Formal analysis, Data curation, Writing—original draft, Data analysis and Curation, Software, Original Drafting. CS: Conceptualization, Investigation, Methodology, Data Curation, Writing—review and editing. AKS: Investigation, Data Analysis. SRM and MFA: Performed XRD and FTIR Characterization. KDM, IVB, VGS, VIP: Performed SEM, Mössbauer and VSM Measurements.

Corresponding authors

Correspondence to Charanjeet Singh or A. K. Srivastava.

Ethics declarations

Conflict of interest

There are no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, M., Singh, C., Martinson, K.D. et al. Significantly improved magnetic parameters of Co–La co-doped strontium hexagonal ferrites for recording applications: structural, hysteresis, and mössbauer performance metrics. J Mater Sci: Mater Electron 34, 2002 (2023). https://doi.org/10.1007/s10854-023-11328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11328-3

Navigation