Log in

Modification with FeOOH magnificent enhanced the photoelectrochemical degradation activity of oxygen vacancy-containing BiVO4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Poor photoelectrochemical (PEC) degradation performance of BiVO4 photoelectrode is generally caused by poor photogenerated charge carriers separate, apparent recombination, and sluggish carrier transfer mobility. To address the aforementioned issues, we first devised a method that combines oxygen vacancy (Ov) and cocatalyst FeOOH for synergistically enhanced BiVO4 PEC degradation performance. With the addition of Ov produced by the convenient hydrothermal method, the improved current density value of 0.54 mA/cm2 was attained on the BiVO4-Ov sample, which is 1.38 times higher than pristine BiVO4 at the same voltage of 1.23 V vs. RHE. Specially, the as-prepared BiVO4-Ov/FeOOH demonstrates a fascinating current density of 1.18 mA/cm2 under light, and present the largest degradation activity of 85%, which is in line with expectations. In summary, our findings show that the Ov may be efficiently protected by covering a FeOOH ultrathin nanolayer, resulting in a photoelectrode with elevated current density and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are not openly available due to unpublished this work anywhere and are available from the corresponding author upon reasonable request.

References

  1. L. **a, J. Bai, J. Li, Q. Zeng, X. Li, B. Zhou, A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Appl. Catal. B 183, 224–230 (2016)

    Article  CAS  Google Scholar 

  2. J. Georgieva, E. Valova, S. Armyanov, N. Philippidis, I. Poulios, S. Sotiropoulos, Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2–WO3 photoanodes. J. Hazard. Mater. 211, 30–46 (2012)

    Article  Google Scholar 

  3. X. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew. Chem. 117, 5245–5248 (2005)

    Article  Google Scholar 

  4. D. Li, J. Jia, T. Zheng, X. Cheng, X. Yu, Construction and characterization of visible light active Pd nano-crystallite decorated and CNS-co-doped TiO2 nanosheet array photoelectrode for enhanced photocatalytic degradation of acetylsalicylic acid. Appl. Catal. B 188, 259–271 (2016)

    Article  CAS  Google Scholar 

  5. Y.F. Su, G.B. Wang, D.T.F. Kuo, M.L. Chang, Y.H. Shih, Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl. Catal. B 186, 184–192 (2016)

    Article  CAS  Google Scholar 

  6. Q. Zheng, C. Lee, Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. Electrochim. Acta 115, 140–145 (2014)

    Article  CAS  Google Scholar 

  7. S. Murcia-Lopez, C. Fàbrega, D. Monllor-Satoca, M.D. Hernández-Alonso, G. Penelas-Perez, A. Morata, T. Andreu, Tailoring multilayered BiVO4 photoanodes by pulsed laser deposition for water splitting. ACS Appl. Mater. Interfaces 8, 4076–4085 (2016)

    Article  CAS  Google Scholar 

  8. M.F. Gromboni, D. Coelho, L.H. Mascaro, A. Pockett, F. Marken, Enhancing activity in a nanostructured BiVO4 photoanode with a coating of microporous Al2O3. Appl. Catal. B 200, 133–140 (2017)

    Article  CAS  Google Scholar 

  9. S.J. Hong, S. Lee, J.S. Jang, J.S. Lee, Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787 (2011)

    Article  CAS  Google Scholar 

  10. M. Zhang, W. Pu, S. Pan, O.K. Okoth, C. Yang, J. Zhang, Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination. J. Alloy. Compd. 648, 719–725 (2015)

    Article  CAS  Google Scholar 

  11. X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, J.H. Park, Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat. Commun. 5, 1–8 (2014)

    Article  CAS  Google Scholar 

  12. L. Chen, F.M. Toma, J.K. Cooper et al., Mo-doped BiVO4 photoanodes synthesized by reactive sputtering. Chemsuschem 8, 1066–1071 (2015)

    Article  CAS  Google Scholar 

  13. J. Yu, A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Func. Mater. 16, 2163–2169 (2006)

    Article  CAS  Google Scholar 

  14. T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014)

    Article  CAS  Google Scholar 

  15. X. Zhao, W. Luo, J. Feng, M. Li, Z. Li, T. Yu, Z. Zou, Quantitative analysis and visualized evidence for high charge separation efficiency in a solid-liquid bulk heterojunction. Adv. Energy Mater. 4, 1301785 (2014)

    Article  Google Scholar 

  16. F.F. Abdi, L. Han, A.H. Smets, M. Zeman, B. Dam, R. Van De Krol, Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 1–7 (2013)

    Article  Google Scholar 

  17. B. Zhou, X. Zhao, H. Liu et al., Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl. Catal. B 99, 214–221 (2010)

    Article  CAS  Google Scholar 

  18. W.J. Jo, J.W. Jang, K.J. Kong, H.J. Kang, J.Y. Kim, H. Jun, J.S. Lee, Phosphate do** into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity. Angew. Chem. 124, 3201–3205 (2012)

    Article  Google Scholar 

  19. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4, 4046–4051 (2011)

    Article  CAS  Google Scholar 

  20. Y. Liang, T. Tsubota, L.P. Mooij, R. van de Krol, Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J. Phys. Chem. C 115, 17594–17598 (2011)

    Article  CAS  Google Scholar 

  21. P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, X. Zheng, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 14, 1099–1105 (2014)

    Article  CAS  Google Scholar 

  22. S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 4, 5028–5034 (2011)

    Article  CAS  Google Scholar 

  23. W. Luo, Z. Li, T. Yu, Z. Zou, Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo-doped BiVO4. J. Phys. Chem. C 116, 5076–5081 (2012)

    Article  CAS  Google Scholar 

  24. B.J. Trześniewski, W.A. Smith, Photocharged BiVO4 photoanodes for improved solar water splitting. J. Mater. Chem. A 4, 2919–2926 (2016)

    Article  Google Scholar 

  25. R.T. Gao, X. Liu, X. Zhang, L. Wang, Steering electron transfer using interface engineering on front-illuminated robust BiVO4 photoanodes. Nano Energy 89, 106360 (2021)

    Article  CAS  Google Scholar 

  26. Z. Chen, Z. Liu, J. Zhan et al., Resolving the mechanism of oxygen vacancy mediated nonradiative charge recombination in monoclinic bismuth vanadate. Chem. Phys. Lett. 766, 138342 (2021)

    Article  CAS  Google Scholar 

  27. J. Xu, Z. Bian, X. **n et al., Size dependence of nanosheet BiVO4 with oxygen vacancies and exposed 0 0 1 facets on the photodegradation of oxytetracycline. Chem. Eng. J. 337, 684–696 (2018)

    Article  CAS  Google Scholar 

  28. Z. Tian, P. Zhang, P. Qin et al., Novel black BiVO4/TiO2-x photoanode with enhanced photon absorption and charge separation for efficient and stable solar water splitting. Adv. Energy Mater. 9, 1901287 (2019)

    Article  Google Scholar 

  29. J. Liu, M. Hao, C. Chen et al., Chlorinating CeO2 at surface oxygen vacancies to promote their selectivity in oxidative dehydrogenation of propane to propene. Appl. Surf. Sci. 528, 147025 (2020)

    Article  CAS  Google Scholar 

  30. S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, N.S. Lewis, Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014)

    Article  CAS  Google Scholar 

  31. S. Zhang, Z. Liu, D. Chen, W. Yan, An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal. B 277, 119197 (2020)

    Article  CAS  Google Scholar 

  32. Y. Li, Z. Liu, J. Li, M. Ruan, Z. Guo, An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 8, 6256–6267 (2020)

    Article  CAS  Google Scholar 

  33. Z. Liu, X. Wang, Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers. Int. J. Hydrogen Energy 43, 13276–13283 (2018)

    Article  CAS  Google Scholar 

  34. Z. Hao, Z. Guo, M. Ruan, J. Ya, Y. Yang, X. Wu, Z. Liu, Multifunctional WO3/NiCo2O4 heterojunction with extensively exposed bimetallic Ni/Co redox reaction sites for efficient photoelectrochemical water splitting. ChemCatChem 13, 271–280 (2021)

    Article  CAS  Google Scholar 

  35. H. He, S.P. Berglund, A.J.E. Rettie et al., Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J Mater. Chem. A 2, 9371–9379 (2014)

    Article  CAS  Google Scholar 

  36. S. Bai, H. Chu, X. **ang et al., Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting. Chem Eng J. 50, 148–156 (2018)

    Article  Google Scholar 

  37. L. Wang, L. Zhuo, H. Cheng et al., Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries. J. Power Sources 283, 289–299 (2015)

    Article  CAS  Google Scholar 

  38. S. **, X. Ma, J. Pan et al., Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes. Appl. Catal. B: Environ. 281, 119477 (2020)

    Article  Google Scholar 

  39. R.T. Gao, S. Liu, X. Guo et al., Pt-induced defects curing on BiVO4 Photoanodes for near-threshold charge separation. Adv. Energy Mater. 45, 11 (2021)

    Google Scholar 

  40. Martimiano do Prado T, Lindo Silva F, Grosseli G, Sergio Fadini P, Fatibello-Filho O, Cruz de Moraes F, 2020 Using BiVO4/CuO-based photoelectrocatalyzer for 4-nitrophenol degradation. Materials, 13: 1322.

  41. R. Akbarzadeh, C.S. Fung, R.A. Rather, I.M. Lo, One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen. Chem. Eng. J. 341, 248–261 (2018)

    Article  CAS  Google Scholar 

  42. N.K. Eswar, S.A. Singh, G. Madras, Photoconductive network structured copper oxide for simultaneous photoelectrocatalytic degradation of antibiotic and bacteria. Chem. Eng. J. 332, 757–774 (2018)

    Article  CAS  Google Scholar 

  43. A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J. Solid State Chem. 240, 43–48 (2016)

    Article  CAS  Google Scholar 

  44. D. Xu, T. **a, H. Xu et al., Synthesis of ternary spinel MCo2O4 (M=Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting. Chem. Eng. J. 392, 124838 (2020)

    Article  CAS  Google Scholar 

  45. K. Ding, B. Chen, Z. Fang et al., Density functional theory study on the electronic and optical properties of three crystalline phases of BiVO4. Theoret. Chem. Acc. 132, 1–7 (2013)

    Article  CAS  Google Scholar 

  46. C. Zhang, Understanding Fundamental Physical Properties of Non-fullerene Acceptors for High Performance Organic Photovoltaics (Hong Kong Baptist University, Hong Kong, 2022)

    Google Scholar 

  47. Y. Li, Z. Liu, J. Zhang, Z. Guo, Y. **n, L. Zhao, 1D/0D WO3/CdS heterojunction photoanodes modified with dual co-catalysts for efficient photoelectrochemical water splitting. J. Alloy. Compd. 790, 493–501 (2019)

    Article  CAS  Google Scholar 

  48. F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. **e, J. Am. Chem. Soc. 136, 6826–6829 (2014)

    Article  CAS  Google Scholar 

  49. C. Shi, X. Dong, X. Wang et al., Ag nanoparticles deposited on oxygen-vacancy-containing BiVO4 for enhanced near-infrared photocatalytic activity. Chin. J. Catal. 39, 128–137 (2018)

    Article  CAS  Google Scholar 

  50. G.A. Cerrón-Calle, A.J. Aranda-Aguirre, C. Luyo, S. Garcia-Segura, H. Alarcón, Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles. Chemosphere 219, 296–304 (2019)

    Article  Google Scholar 

  51. L. Qiu, Y. Cui, X. Tan, S. Zheng, H. Zhang, J. Xu, Q. Wang, Construction of Ag3PO4/Ag4P2O7 nanospheres sensitized hierarchical titanium dioxide nanotube mesh for photoelectrocatalytic degradation of methylene blue. Sep. Purif. Technol. 215, 619–624 (2019)

    Article  CAS  Google Scholar 

  52. S. Zhang, Z. Liu, D. Chen, Z. Guo, M. Ruan, Oxygen vacancies engineering in TiO2 homojunction/ZnFe-LDH for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 395, 125101 (2020)

    Article  CAS  Google Scholar 

  53. A. Medel, J.A. Ramírez, J. Cárdenas, I. Sirés, Y. Meas, Evaluating the electrochemical and photoelectrochemical production of hydroxyl radical during electrocoagulation process. Sep. Purif. Technol. 208, 59–67 (2019)

    Article  CAS  Google Scholar 

  54. N.K.R. Eswar, S.A. Singh, G. Madras, Photoconductive network structured copper oxide for simultaneous photoelectrocatalytic degradation of antibiotic (tetracycline) and bacteria (E. coli). Chem. Eng. J. 332, 757–774 (2018)

    Article  CAS  Google Scholar 

  55. J.M. Noël, A. Latus, C. Lagrost, E. Volanschi, P. Hapiot, Evidence for ·OH radical production during electrocatalysis of oxygen reduction on Pt surfaces: consequences and application. J. Am. Chem. Soc. 134, 2835–2841 (2012)

    Article  Google Scholar 

  56. S. Liu, M.G. White, P. Liu, Mechanism of oxygen reduction reaction on Pt in alkaline solution: importance of chemisorbed water on surface. J. Phys. Chem. C 120, 15288–15298 (2016)

    Article  CAS  Google Scholar 

  57. J. Wang, L. Jiang, F. Liu et al., Enhanced photoelectrochemical degradation of tetracycline hydrochloride with FeOOH and Au nanoparticles decorated WO3. Chem. Eng. J. 407, 127195 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Tian** Science and Technology Planning Project (21YDTPJC00730), National Natural Science Foundation of China (No. 52073200), National Natural Science Foundation of China (No. 52106104).

Funding

Tian** Science and Technology Planning Project, 21YDTPJC00730, Mengnan Ruan

Author information

Authors and Affiliations

Authors

Contributions

MM carried out measurements and manuscript composition. MR raised external funding support. WC performed experimental design. KY conceptualized and supervised the work. All authors contributed to the data analyses and manuscript preparation.

Corresponding author

Correspondence to Mengnan Ruan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (DOCX 901 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Ruan, M., Cao, W. et al. Modification with FeOOH magnificent enhanced the photoelectrochemical degradation activity of oxygen vacancy-containing BiVO4. J Mater Sci: Mater Electron 34, 1648 (2023). https://doi.org/10.1007/s10854-023-10975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10975-w

Navigation